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ABSTRACT 

 
We present a neural network model of phonetic and 
phonological acquisition that can handle two distinct 
phenomena: category creation and auditory disper-
sion. Within a single neural network, learning pro-
ceeds in two stages. The first stage is distributional 
learning, during which the model induces phono-
logical features from an auditory input distribution; 
in the second stage, the model acquires knowledge 
about the relation between lexical categories and the 
auditory input distribution. The model can be used 
bidirectionally: once perceptual learning is com-
plete, the network can also be asked to speak. In the 
production direction, effortful, perceptually periphe-
ral tokens are avoided. In a chain of iterated learners, 
in which the output of one generation serves as the 
input to the next, sound systems emerge that main-
tain sufficient contrast at a moderate articulatory 
cost, regardless of the initial distribution. 
 
Keywords: neural networks; phonological features; 
auditory dispersion; sound change. 

1. INTRODUCTION 

The speaker-listener is often assumed to be subject 
to two competing forces: on one hand, the pressure 
to be clear; on the other hand, the pressure to be lazy 
[2, 20, 27]. These pressures oppose each other, since 
a larger auditory contrast entails increased articula-
tory effort as well. The two forces can be seen at 
work both at the level of the individual speaker-
listener and at the level of the linguistic system: e.g. 
speakers reduce contrasts in casual speech [9, 11]; 
and in sound systems, the auditory correlates of 
phonological categories are distributed in a way that 
maintains sufficient perceptual distinctiveness 
between categories [18, 19]. 

1.1 Auditory dispersion 

The maintenance of sufficient contrast in sound 
systems is sometimes regarded as a synchronically 
functionalist process [14, 17, 25]; Boersma & Ha-
mann [7] (hereafter B&H), on the other hand, model 
it as an emergent phenomenon. In their formaliza-

tion, the learner first goes through a stage of lexicon-
driven perceptual learning: she acquires a grammar 
expressing knowledge about the relation between 
auditory cues and phonological categories. Here a 
prototype effect occurs, i.e. the learner prefers a 
token in perception that is less confusable and more 
peripheral than the token that was most frequent in 
her input. B&H’s model is bidirectional, so the 
learner uses this same knowledge in production as 
well; however, as a speaker she tries to avoid audito-
rily peripheral tokens, since these require more 
articulatory effort. Using simulations of iterated lear-
ning chains, B&H show that in a stable inventory, 
the articulatory and prototype effects cancel each 
other out; when the contrast in the initial distribution 
is exaggerated, the articulatory effect will push the 
categories towards more central values; when the 
initial contrast is confusing, the prototype effect will 
push the categories outwards. In all cases, a stable, 
optimally dispersed inventory emerges within a 
number of generations, without any goal-oriented 
elements in the model. 

1.2 Category creation 

Most mainstream phonological frameworks presup-
pose the existence of discrete categories. Since we 
want to model category emergence, we work with 
neural networks, which have already been used to 
model feature discovery [1, 6, 10, 29]. A neural net-
work consists of layers of nodes, connected to each 
other with connections that can be either excitatory 
or inhibitory. Nodes can be activated, and activity 
can flow through the network: when a node is active, 
it activates those nodes that it is connected to with 
excitatory connections (i.e. connections with posi-
tive weights), and inhibits those nodes that it is con-
nected to with inhibitory connections (i.e. connec-
tions with negative weights). 

2. THE MODEL 

We present a neural network model that is capable 
of category creation, in which optimal auditory 
dispersion emerges as well. Our formalization is 
couched in Boersma’s bidirectional model of phono-
logy and phonetics (BiPhon) [5], shown below. 
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Figure 1: The architecture of the BiPhon model. 
 

 
 

The BiPhon model assumes at least two phono-
logical and two phonetic levels of representation. 
The phonological levels are an underlying morphe-
mic level (UF), and a prosodically structured surface 
form (SF) [28]; in addition, there are an auditory-
phonetic representation (AudF), representing audi-
tory cues like formants and plosive release bursts, 
and an articulatory-phonetic form (ArtF) containing 
a plan of articulatory gestures. Faithfulness know-
ledge evaluates the mapping between UF and SF 
[21]; structural restrictions evaluate the phonotactic 
wellformedness of SF [28]; cue knowledge ex-
presses the relation between phonological categories 
and auditory cues [4, 12]; sensorimotor knowledge 
evaluates the relation between auditory cues and 
their articulatory implementation [3]; and articula-
tory constraints evaluate articulatory effort [2, 17]. 

In the neural network version of the BiPhon 
model, every level of representation is implemented 
as a layer of nodes [6]. In this paper, we model two 
independent auditory continua (e.g. centre of gravity 
in sibilants, and VOT), resulting in two separate 
AudF layers and two SF layers. We assume perfect 
sensorimotor knowledge; instead, the AudF and 
ArtF layers are connected with connections whose 
weights are more negative at the edges of the conti-
nuum, inhibiting activities there more strongly. 

The neural network learns in two stages: a distri-
butional learning stage followed by a lexicon-driven 
learning stage (§3). Once learning is complete, the 
network will produce an output that may serve as the 
input to a new network (§4), i.e. we create a chain of 
iterated learners [16]. We will show that all three 
types of learning play a role in the emergence of 
features as well as auditory dispersion. 

3. EMERGENT FEATURES 

Fig. 2 shows a neural network in its initial state. Per 
auditory continuum, there are 48 AudF nodes and 6 
SF nodes, connected with excitatory cue connections 
(drawn in black). Within each SF layer, all nodes are 
connected with inhibitory connections [29] (drawn 
in grey). Before learning begins, the activities of the 
SF nodes and the weights of the cue connections are 
small and random. A larger black circle drawn inside 
a node indicates stronger activation. 
 

Figure 2: A neural network before learning. 
 

 
 

All simulations are run with a script in Praat [8]. The 
first step in the simulation is to determine the initial 
language, based on parameters set in the script: the 
user indicates where the category peaks in the audi-
tory environment of the first generation lie. The 
probabilities of the input tokens are normally 
distributed around the category peaks, as in Fig. 3. 

 
Figure 3: The auditory environment of the learner. 
 

 
 

Since the continuum on the horizontal axis is 
divided into 48 nodes, the probability of each indi-
vidual node at AudF is computed. In Fig. 3, there are 
two categories on the continuum, one with a peak at 
35% of the continuum, one with a peak at 65%. The 
dotted curves in the figure show the distributions of 
both categories, the solid curve shows the sum of 
these categories. Learning proceeds in two stages. 

Stage 1: distributional learning. We assume 
that there is no lexicon in place at this stage yet: the 
network only learns from the auditory environment, 
without having acquired any category labels yet. A 
learning step in the first stage proceeds as follows. 
From the cumulative distribution, i.e. the solid curve 
in Fig. 3, an auditory value is drawn, based on its 
probability. A bit of transmission noise [7, 24], 
whose amount is normally distributed around mean 
0, is added to the token; a normally distributed acti-
vation pattern, centered around the token, is applied 
to the AudF layer. This last step is motivated by the 
fact that the biological correlate of the AudF layer is 
the basilar membrane, and incoming sounds on the 
basilar membrane activate adjacent hair cells as well 
[23]. Subsequently, the activities from the AudF 
layers are spread to the corresponding SF layers in 
100 time steps. The inhibitory connections within 
each SF layer cause a node that becomes activated to 
simultaneously deactivate the other nodes in the 
layer; as a result, nodes become specialized in parts 
of the auditory continuum (“competitive learning”). 
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Once activity spreading is done, the weights of the 
cue connections are updated according to the 
‘inoutstar’ algorithm [6], a bidirectional algorithm 
that combines properties of the instar and outstar 
learning rules [15, 29]. 

Fig. 4 shows the network from Fig. 2 after 8,000 
learning steps. On the leftmost continuum, SF nodes 
1, 2 and 6 have become specialized in the left side of 
the continuum; nodes 3, 4 and 5 are specialized in 
the right side. On the rightmost continuum, nodes 3, 
5 and 6 have become connected to the left side of the 
continuum; and nodes 1, 2 and 4 to the right side. 
This means that when we spread activity from an 
AudF node to SF on the left continuum, two patterns 
are possible: either nodes 1, 2, and 6 are on while 3, 
4 and 5 are off, or 3, 4 and 5 are on while 1, 2 and 6 
are off. In other words: binary features have emer-
ged at SF. The same is true for the other continuum. 
This categorical behaviour is directly observable in 
our model, while it needs to be inferred in other 
computational models of distributional learning [13, 
22, 26].  
 

Figure 4: The network after 8,000 learning steps. 
 

 
 

Stage 2: lexicon-driven learning. After the 8,000th 
learning step, lexicon-driven learning begins. The 
network is extended with an UF layer, which has 
four nodes per lexical category and is connected to 
both SF layers with excitatory connections. In this 
second stage of learning, the input to the network 
consists of AudF-UF pairs: the auditory tokens are 
drawn from the dotted distributions in Fig. 3, i.e. the 
distributions with lexical category labels, and the 
corresponding category nodes at UF are switched on 
as well. Since the activity between AudF and UF 
necessarily flows through SF, the newly emerged 
categories mediate this process. Once the activity 
spreading is done, the weights of the faithfulness and  
cue connections are updated with the same algorithm 
from the previous learning stage. Fig. 5 shows the 
network from Figs. 2 and 4 after 16,000 tokens.  

 
Figure 5: The network after 16,000 learning steps. 

 

 

4. EMERGENT DISPERSION 

The bidirectionality of the BiPhon model is ensured 
because the neural network is symmetric, i.e. the 
connection from node A to node B has the same 
weight as that from node B to node A. Therefore, the 
network can be used in the production direction as 
well. In the production direction, we add an ArtF 
node, which is connected to both AudF continua 
with inhibitory connections, whose weights are more 
negative at the edges of the continua. The produc-
tion of a lexical category entails the activation of its 
UF nodes, then spreading activity down through SF 
to AudF. ArtF needs to be activated as well, sprea-
ding activity up to AudF, inhibiting the edges of 
both continua more strongly, cf. Fig. 6. The resul-
ting activities at the AudF layer can be interpreted as 
probabilities. We can sample this probability distri-
bution to get inputs for training a new network, then 
use the production of that network to train a third, 
and so on: that is, we can create a chain of iterated 
learners, and track the evolution of an inventory 
across multiple generations. 
 

Figure 6: The network producing a lexical category. 
 

 
 

We explore the evolution of two types of initial dis-
tribution, both with four categories: a “standard” 
inventory, whose peaks lie at 35% and 65% of both 
continua, and a skewed, exaggerated inventory.  

Fig. 7 is a 48×48 grid, showing the initial proba-
bility distribution of all combinations of AudF nodes 
on both continua in the standard inventory.  

 
Figure 7: A standard contrast. 
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Fig. 8 shows the evolution of this inventory over 10 
generations, averaged over 5 runs. Black curves in-
dicate the average input nodes; grey curves indicate 
the average ± 1 sd. Fig. 8 shows that the standard 
inventory remains stable over the generations. 

 
Figure 8: The evolution of a standard contrast. 
 

 
 

Fig. 9 shows the initial probability distributions of a 
skewed inventory in a 48×48 grid; the evolution of 
this inventory over 40 generations, averaged over 5 
runs, can be seen in Fig. 10. 

 
Figure 9: A skewed, exaggerated contrast. 
 
 

 
 

Figure 10: The evolution of a skewed, exaggerated 
contrast. 

 

 
 

Two phenomena can be seen in Fig. 10: merger and 
dispersion. The merger proceeds in two steps. First-
ly, even though none of the categories shared a peak 
in its distributions with any other categories initially, 

the peaks on both continua are sufficiently close to 
one another that the network induces identical 
representations at SF during distributional learning, 
already within the first generation. Subsequently, the 
resulting bimodal distributions become monomodal 
(seen in Fig. 10 as the convergence of the black 
curves), as the inhibitory articulatory connections 
reduce the size of the most peripheral peak and push 
it towards the center. Dispersion emerges because 
the articulatory effect pushes the auditory distri-
butions towards the centre of both continua, after 
which we end up with the optimally dispersed stan-
dard inventory familiar from Fig. 8. 

All three types of learning play a role in the 
evolution of this inventory. The induction of a single 
feature value from two non-identical auditory distri-
butions can only happen if the lexicon is not yet 
involved, i.e. during the distributional learning stage. 
Once the two auditory distributions share the same 
feature value, both corresponding lexical categories 
at UF will become connected to SF in the exact 
same way during the lexicon-driven learning stage, 
which entails that these categories will also have 
identical output probability distributions at AudF in 
production. The iterated learning process is crucial 
because the initial contrast is too large to be resolved 
in a single generation; every new generation adds a 
small articulatory effect. 

5. CONCLUSION 

We presented a neural network model that involves 
three types of learning: firstly, a neural network 
induces features from an auditory input distribution 
(distributional learning); secondly, it acquires know-
ledge of the relation between lexical categories and 
the auditory input distribution (lexicon-driven 
learning); and thirdly, its speech output is used as 
the input to a new network (iterated learning). The 
first two types of learning happen within a single 
neural network and use the same learning algorithm. 
The three types of learning account for two distinct 
phenomena: the emergence of phonological features 
within every generation, and the emergence of audi-
tory dispersion over multiple generations.  

In other computational models of distributional 
learning [13, 22, 26], categorical behaviour emerged 
as well, sometimes aided by lexical information 
[13], but we are not aware of other models that 
handle both perception and production. Also, to our 
knowledge, the two different timescales on which 
features and dispersion emerge on multiple continua 
have not been unified in a single model before. 
Future extensions of the model will involve, among 
other things, the roles of morphological alternations 
[10] and phonetic context.  
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