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ABSTRACT
Children with Developmental Language Disorder (DLD) have di!culties 
acquiring the grammatical rules of their native language. It has been pro-
posed that children’s detection of sequential statistical patterns correlates 
with grammatical pro"ciency and hence that a de"cit in the detection of 
these regularities may underlie the di!culties with grammar observed in 
children with DLD. Although there is some empirical evidence supporting 
this claim, individual studies, both in children with and without DLD, vary in 
the strength of their reported associations. The aim of the present study is 
therefore to evaluate the evidence for the proposed association. This is 
achieved by means of (a) a conceptual replication study on 35 children 
with DLD and 35 typically developing children who performed the serial 
reaction time task and a test of grammatical pro"ciency and (b) a meta- 
analysis over 19 unique e#ect sizes, which collectively examined the serial 
reaction time task – expressive grammar correlation in 139 children with DLD 
and 573 typically developing children. Both outcomes provide no evidence 
for or against the existence of the proposed association. Neither do they 
provide evidence for a di#erence in the strength of the association between 
both groups of children.

When acquiring their native language, children unconsciously detect and process structural regula-
rities that facilitate word extraction, the induction of phonological and grammatical categories and the 
representation of (morpho)syntactic rules (Erickson & Thiessen, 2015; Mintz, 2003; Saffran et al., 
1996; Wijnen, 2013). It has been proposed that children detect and process these regularities via 
statistical learning. Evidence that statistical learning may play a role in language development comes 
from two different sources. Firstly, a number of studies has reported on associations between 
children’s statistical learning ability and different aspects of language (vocabulary size: e.g., Evans 
et al., 2009; syntactic processing: Kidd, 2012; Kidd & Arciuli, 2016; Misyak et al., 2010; Misyak & 
Christiansen, 2012; grammar: Hamrick et al., 2018; reading: Arciuli, 2018 and spelling: Treiman, 
2018). Secondly, there is evidence for a statistical learning deficit in children who have Developmental 
Language Disorder (DLD, Evans et al., 2009; Hsu & Bishop, 2014; Lammertink et al., 2017; 
Lammertink, Boersma, Wijnen et al., 2020; Obeid et al., 2016). By definition, children with DLD 
exhibit difficulties with language, across multiple areas (lexicon, phonotactics, morphology, morpho-
syntax, syntax, discourse) in the absence of a known biomedical cause, intellectual disability, or 
unfavorable psycho-social/educational conditions (Bishop et al., 2017). Despite heterogeneity in the 
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language difficulties observed across children with DLD, almost all children with DLD struggle with 
the acquisition of the rule-based aspects (i.e., morphology, syntax, morphosyntax, phonology and 
phonotactics) of language (Leonard, 2014). Given that the detection of these rule-based aspects of 
language may depend on the detection of sequential statistical regularities, their problems with these 
components of language may be explained by a statistical learning deficit (or a procedural learning 
deficit, see below; Evans et al., 2009; Hsu & Bishop, 2014; Lammertink et al., 2017; Lammertink, 
Boersma, Wijnen et al., 2020; Obeid et al., 2016; Ullman & Pierpont, 2005; Ullman & Pullman, 2015).

A de!cit in the detection of sequential regularities

The serial reaction time task (task design is explained in more detail below) is frequently used to assess 
children’s sensitivity to sequential statistical regularities (i.e. sensitivity to differences in the transi-
tional probability from one element to another element over time). Sensitivity to such sequential 
statistical information has been proposed to underlie the acquisition of grammatical rules in language. 
For example, in the English present tense, singular subjects frequently co-occur with [s]-marking on 
the verb (subject–verb agreement as in the child walks). In order to learn subject–verb marking, 
children need to detect that there is a grammatical relation between a singular subject and verb–plus– 
[s] marking. Other than sequential statistical regularities, it has also been shown that people are 
sensitive to distributional statistics (e.g., Maye et al., 2002) and cross-situational statistics (Smith & Yu, 
2008; Yu & Smith, 2007). However, the focus of the present study is on children’s detection of 
sequential statistical regularities and the relation between sequential statistical learning and gramma-
tical proficiency and we use the terms statistical learning and sequential statistical learning inter-
changeably in this paper.

Sensitivity to sequential regularities also plays a key role in the declarative/procedural model of 
language (Ullman, 2014) and the associated procedural learning deficit hypothesis (Ullman & 
Pierpont, 2005; Ullman & Pullman, 2015). In short, and skipping over the nuances, the declarative/ 
procedural model of language states that the acquisition of rule-based aspects of language (such as 
grammar) is supported by a procedural memory system, whereas the acquisition of lexical knowledge 
is linked to a declarative memory system. Similar to predictions from the statistical learning literature, 
the declarative/procedural model of language predicts a correlation between children’s sensitivity to 
sequential regularities and their grammatical proficiency. Furthermore, the procedural learning deficit 
hypothesis also predicts reduced sensitivity to sequential statistical regularities in children with DLD 
as compared to their typically developing peers. According to the procedural learning deficit hypoth-
esis, this declarative learning mechanism is relatively spared in children with DLD, and children with 
DLD may even compensate their procedural learning deficit via declarative learning. That is, in 
learning the grammatical rules of their language, children with DLD may rely more on their 
declarative learning system than their procedural learning system (sometimes also referred to as the 
declarative memory compensation hypothesis, see Ullman & Pullman, 2015). This declarative memory 
compensation hypothesis predicts weaker associations between procedural learning and grammatical 
proficiency in children with DLD as compared to typically developing children (note that this weaker 
association does not mean that the hypothesis predicts no correlation between procedural learning and 
grammar proficiency in children with DLD; as explained in Lum et al., 2012, it is still likely that such 
an association also exists in children with DLD). To the best of our knowledge, statistical learning 
deficit accounts do not necessarily predict a difference in the strength of the correlation between both 
groups of children.

Thus, both the statistical learning deficit hypothesis and the procedural deficit hypothesis argue that 
children with DLD may have a deficit in their detection of sequential patterns and both accounts 
predict that typically developing children outperform children with DLD on any learning task that 
requires the detection of sequential statistical patterns (the serial reaction time task being a prime 
example of such a task). Evidence for the existence of a sequential learning deficit in children with 
DLD as compared to typically developing children comes from studies that investigated this type of 
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learning in both groups of children in the auditory domain (see meta-analysis across 10 studies by 
Lammertink et al., 2017, and meta-analysis across 14 studies by; Obeid et al., 2016), the visuomotor 
domain (see meta-analysis across eight studies by Lum et al., 2014, and the meta-analysis by Obeid 
et al.) All three meta-analyses conclude that the detection of sequential regularities is, on average, not 
as effective in people with DLD as compared to people without DLD. Interestingly, the standardized 
effect size for the difference between both populations is largest in the meta-analysis on auditory verbal 
statistical learning (Lammertink et al., 2017). Lammertink et al. speak of a medium to large disadvan-
tage in auditory verbal statistical learning in people with DLD. The difference between both popula-
tions is smallest in the meta-analysis on visuomotoric statistical learning (Lum et al., 2014). In this 
meta-analysis, the confidence interval for the standardized difference between both groups ranges 
from 0.072 to 0.584, meaning that we can speak of a small to medium statistical learning disadvantage 
for people with DLD in the visuomotor domain. Although these outcomes may suggest that the 
statistical learning deficit for DLD is largest in the auditory verbal domain, it should be noted that the 
studies included in both meta-analyses also differed in the procedures by which statistical learning is 
measured. The auditory verbal statistical learning tasks that were included in the meta-analysis by 
Lammertink et al. (2017) almost all assessed statistical learning with an offline measure (grammati-
cality judgments after learning took place), whereas all studies included in the meta-analysis by Lum 
et al. (2014) assessed statistical learning with the serial reaction time task – an online measure. As we 
also conclude at the end of this paper, it is likely that measurement procedures impact the size of the 
statistical learning deficit.

Both the statistical learning deficit hypothesis and the procedural learning deficit hypothesis predict 
that children’s performance on the serial reaction time task correlates with grammatical proficiency. 
A quantitative summary (meta-analysis) of studies investigating such associations in typically devel-
oping children learning their first language provided evidence that this is indeed the case (Hamrick 
et al., 2018). Although the correlation between serial reaction time task performance and grammatical 
proficiency in children with DLD has been explored (see next section) in several studies, a quantitative 
summary of all these studies does not exist yet, but is needed in order to obtain an estimate of the 
strength of the sequential statistical learning – grammatical proficiency relationship in children with 
and without DLD. Such a quantitative summary (meta-analysis) on the correlation between serial 
reaction time performance and grammatical proficiency in children with DLD is of particular interest, 
because the correlation analyses reported in the individual studies are often exploratory or secondary 
to the DLD-typically developing group comparison on the statistical learning task. A meta-analysis 
with a focus on this correlation allows us to not only assess its robustness, but may help us explain 
variation in reported results, by exploring (potential) moderators that are difficult to assess in a single 
study (e.g., the effect of age and sequence type [first-order conditional versus second-order condi-
tional], as explained later on; Black & Bergmann, 2017).

Statistical learning and grammatical pro!ciency: the need for replication

The discussion above reveals that there is some (albeit mostly exploratory) empirical evidence that 
sequential statistical learning (measured with the serial reaction time task) correlates with grammatical 
proficiency in typically developing children. At the same time, a closer look at the outcome of Hamrick 
et al.’s meta-analysis reveals that the 95% confidence interval of the average weighted correlation 
between serial reaction time task proficiency and grammatical proficiency ranges from +.009 to +.495. 
This means that, in the sense of Cohen (1992), the strength of the association in typically developing 
children varies between “small” and “medium to large”. This relatively wide confidence interval 
indicates that the strength of the associations reported in individual studies varies strongly. 
Altogether, these results suggest a large variability in the size and existence of the proposed association 
between children’s serial reaction time performance and their grammatical proficiency, and thus that 
the association may not be as robust as commonly thought.
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Motivated by these large differences in observed associations, as well as the general replication crisis 
and the documented existence of publication biases (“file drawer problem”) in psychology (e.g., Open 
Science Collaboration, 2015; Rosenthal, 1979), the aim of the present study is to (again) evaluate the 
existence and strength of the association. This is done by (a) a conceptual replication of previous 
experiments on a visuomotoric statistical learning deficit in children with DLD and (b) a quantitative 
summary (meta-analysis) of the studies that explored the proposed association between serial reaction 
time performance and grammatical proficiency in children with and without DLD. This meta-analysis 
also allows us to explore if a publication bias is likely to exist and to explore whether the serial reaction 
time task-grammatical proficiency correlation differs between children with and without DLD (as 
predicted by the declarative memory compensation hypothesis). Our meta-analysis serves a different 
goal than the meta-analysis on serial reaction time performance and grammatical proficiency con-
ducted by Hamrick et al. (2018). Hamrick et al. aimed to test the predictions of the declarative/ 
procedural model in first and second language learners (Ullman, 2014), whereas we focus (a) on the 
relation between serial reaction time performance and grammatical proficiency only, leaving the 
relationship between declarative learning and lexical knowledge aside, and (b) we focus on different 
populations, namely children with and without DLD. This different focus makes our analysis different 
from the one conducted by Hamrick et al. Our meta-analysis is also different from the meta-analysis 
on serial reaction time task performance by Lum et al. (2014). Lum et al. assessed the group difference 
in serial reaction time task performance whereas our meta-analysis assesses the strength between 
children’ serial reaction time task performance and grammatical proficiency at the individual level. As 
explained above, a meta-analysis on the strength of the correlation in both groups is of particular 
interest, because in previous studies these correlations are often reported as exploratory analyses only.

The serial reaction time task

The serial reaction time task is one of the most commonly used tasks to assess children’s sensitivity to 
a fixed sequence in the visuomotor domain. In this fixed sequence (“structured trials”), the appearance 
of a visual stimulus follows a repeating sequence of predefined positions on a computer screen. In the 
task, sensitivity to sequential structure is usually operationalized as the difference in response times to 
structured versus random trials. After repeated exposure to structured trials, random trials elicit 
slower responses than structured trials. After the introduction of the serial reaction time task by Nissen 
and Bullemer (1987), different versions of the task have been used. These versions differ, amongst 
other factors, in the length of the repeating sequence, in the sequence structure (first-order conditional 
versus second-order or higher-order conditional, explained below), in the response mode used 
(response box, keyboard, touch screen), and in the number of trials to which participants are exposed. 
These aspects may impact performance: the meta-analysis on serial reaction time performance in 
children with and without DLD from Lum et al. (2014), for example, showed that longer exposure to 
the sequenced trials leads to smaller differences in performance between children with and with-
out DLD.

In the experimental part (i.e. our conceptual replication) of the present study, we use a serial 
reaction time that is based on the one used by Lum and Kidd (2012, for differences between our task 
and the task of Lum and Kidd, see Materials section). We decided to work with this serial reaction time 
task as the design of this task is comparable, in terms of the sequence type used (first-order condi-
tional) and the block structure used (structured versus random blocks), to serial reaction time tasks 
that are commonly used to assess the presence of a visuomotor statistical learning deficit in children 
with DLD (e.g., Clark & Lum, 2017; Conti-Ramsden et al., 2015; Hsu & Bishop, 2014; Park et al., 2018). 
Thus, our experimental study can be seen as a conceptual replication of earlier work on the presence of 
a visuomotoric statistical learning deficit in children with DLD. That is, our task design does not differ 
in any significant way from earlier studies on this topic (for a definition of the term “conceptual 
replication” see Black & Bergmann, 2017).
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As will also become clear from our meta-analysis, not all studies on serial reaction time task 
performance in children with and without DLD work with first-order conditional sequences, however. 
Some studies also assessed the size of the learning deficit using second-order (or even higher-order) 
conditional sequences. In first-order conditional sequences, each position can be predicted (albeit with 
varying degrees of probability) from the previous position and thus the sequence can be learned from 
adjacent dependencies. In second-order conditional sequences, each position occurs equally often and 
also each adjacent pair of positions occurs equally often; therefore, all pairwise transitions are 
ambiguous and the next position can only be learned from the previous two positions (Cohen et al., 
1990). The use of first-order conditional sequences versus second-order conditional sequences may 
impact the strength of the association between serial reaction time performance and grammatical 
proficiency, as learning second-order conditional sequences may require different (or additional) 
cognitive processes than learning first-order conditional sequences (Clark et al., 2019; Wilson et al., 
2018). Also, second-order conditional structure may more closely mimic the long-distance depen-
dencies often reflected in the morphological and morphosyntactic rules of natural languages than the 
adjacent dependencies in first-order conditional sequences (Wilson et al., 2018). Our meta-analysis (in 
the second part of this paper) explores if the strength of the association between serial reaction time 
performance and grammatical proficiency depends on the use of second-order conditional sequences 
versus first-order conditional sequences.

Measures of grammatical pro!ciency

Tests used to assess grammatical proficiency in children vary widely on a range of parameters. 
Amongst other things, these tasks differ in what grammatical structures they target, and also in 
their assessment of children’s receptive grammatical proficiency or expressive grammatical proficiency. 
For example, some of the studies included in our meta-analysis focused on a specific grammatical 
structure, such as past-tense production (e.g., Lum & Kidd, 2012; Mimeau et al., 2016) whereas others 
used broader tasks of grammatical proficiency, such as the sentence recall task from the Clinical 
Evaluation of Language Fundamentals (CELF; Semel et al., 2010) test battery (e.g., Hani, 2015; Obeid, 
2017; Park et al., 2018).

In our experimental study (first part of this paper) we use the sentence recall task (a subset of the 
Dutch Clinical Evaluation of Language Fundamentals test battery; CELF-4-NL; Semel et al., 2010) as 
a measure of children’s grammatical proficiency. Poor sentence recall is a robust clinical marker of 
DLD (Conti-Ramsden et al., 2001). In the task children are asked to recall sentences. These sentences 
become increasingly longer and more complex as the task continues. The task includes different 
sentence types (e.g., passives, declaratives, relative clause constructions) and targets different mor-
phosyntactic processes (subject–verb agreement, past-tense production, pluralization). Performance 
on the sentence recall task has been shown to correlate with measures of past-tense production and 
grammatical usage of verbs in third person singular in both children with and without DLD (Conti- 
Ramsden et al., 2001). Although successful sentence recall also depends on lexical knowledge and 
other cognitive processes such as verbal short-term memory, verbal long-term memory (Conti- 
Ramsden et al., 2001) and working memory (Frizelle et al., 2017), Polišenská et al. (2015) demonstrate 
that “children’s ability to repeat sentences is more dependent on their familiarity with morphosyntax 
than semantics or prosody [. . .]”. As such we consider the sentence recall task as a good proxy of 
children’s (expressive) grammatical proficiency.
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Study 1: experimental study

Methods experimental study

Participants
Thirty-seven children with DLD and fifty-nine typically developing children, aged between seven and 
twelve years of age, participated in the experiment. We informed everyone involved in the recruitment 
process that recruitment and testing had to fit within a predetermined testing period that ran from 
January 2017 to March 2018, and we recruited and tested as many children as possible in the available 
recruitment time. We obtained approval from the ethical review committee of the University of 
Amsterdam, Faculty of Humanities. For the participants with DLD, their parents or caregivers gave 
informed consent prior to their children’s participation in the study. We obtained passive informed 
consent from the parents or caregivers of the typically developing participants before the start of the study.

As explained in the Procedure section, the same children with and without DLD also participated in 
Lammertink, Boersma, Wijnen et al. (2020) and in Lammertink, Boersma, Rispens et al. (2020), but 
there is no overlap in the tasks. Furthermore, data from a subset of the typically developing children 
that participated in this study are reported on in Van Witteloostuijn, 2020).

Children with DLD
We recruited children with DLD through four national organizations in the Netherlands (The Royal 
Auris Group, the Royal Kentalis Group, Pento, Viertaal) and through an association for parents of 
children with DLD (stichting Hoormij). All children had received the diagnosis of DLD by licensed 
clinicians before participating in the present study, and were additionally selected to meet all of the 
following criteria: (a) they had scored at least 1.5 standard deviations below the norm on two out of 
four subscales (speech production, auditory processing, grammatical knowledge, lexical semantic 
knowledge) of a standardized language assessment test battery administered by a licensed clinician 
(but not as part of our own test battery); (b) at least one of their parents was a native speaker of Dutch; 
and (c) they had not been diagnosed with autism spectrum disorder, attention deficit hyperactivity 
disorder, or other (neuro)physiological problems. Finally, our test battery included the Raven 
Progressive Matrices subtest (Raven et al., 2003), a standardized measure of nonverbal intelligence, 
on which the participants had to obtain a percentile score of at least 17%, which is the lower bound of 
the normal range, to be included in our final sample. This means that the children in our sample also 
met the criterion for having specific language impairment (for a discussion on the labels DLD versus 
specific language impairment, see Bishop et al., 2017). After testing, we had to exclude two children 
with DLD: one child because of technical problems and one child because of a hearing problem that 
had only been diagnosed during the testing period.

Typically developing children
We recruited the typically developing children through four different primary schools across the 
Netherlands. We used the Raven Progressive Matrices subtest (Raven et al., 2003), the one-minute-real 
-word reading test (Brus & Voeten, 1979), the two-minute-nonce-word reading test (Van den Bos 
et al., 1994), a test of spelling (Braams & de Vos, 2015) and the sentence recall test from the CELF- 
4-NL (Semel et al., 2010) to determine if children met our inclusion criteria for the typically 
developing children (all these tasks were part of our own task battery, see Procedure section). We 
excluded children that scored below the normal range on the Raven Progressive Matrices and/or on 
two or more of the four language tasks mentioned above. Additionally, we also excluded children from 
the typically developing group if they had been diagnosed with autism spectrum disorder, attention 
deficit hyperactivity disorder, or with other (neuro)physiological problems. In total, we excluded five 
children by the first criterion and one child by the second criterion. From the remaining 53 typically 
developing children, we selected 35 children that matched best with our DLD sample, considering age, 
gender, socioeconomic status (on the basis of postal code; Sociaal en Cultureel Planbureau, 2017) and 
nonverbal intelligence (Raven et al., 2003). Our final sample included 35 children with DLD (7 
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females, 28 males) and 35 typically developing children (9 females, 26 males). We refer to Table 1 for 
a summary of the relevant group characteristics.

Materials

Serial reaction time task
We used a serial reaction time task based on the one used by Lum and Kidd (2012). Children were 
seated in front of a Microsoft Surface 3 tablet computer screen, with a gamepad controller attached to 
the computer running E-prime (Version 2.0; 2012) software. A visual stimulus (a cartoon picture of 
a smiley) appeared repeatedly in one of four marked locations on the screen. These locations were 
arranged in a diamond shape (Figure 1). We instructed children to press the corresponding button on 
the gamepad controller as quickly and accurately as possible (see Figure 1). Each stimulus was visible 
until the child pressed the corresponding button, with a maximum response time of 3 seconds. After 
the child had responded, there was a 250-millisecond interval before the next stimulus appeared. 

Table 1. Overview of participants’ age, gender and socioeconomic status as well as the mean raw and, when available, standardized 
scores of the children with and without DLD on the raven progressive matrices task, the one-minute-real-word reading task, the two- 
minute-nonce-word reading task, a test of spelling and the sentence recall task (measure of morphosyntactic knowledge).

DLD TD
Comparison between DLD and 

TD

N = 35 
(F = 7,M = 28)

N= 36 
(F = 9,M = 26) t p 95% CI

Age (years;months)
Raw Mean 9;1 9;1 0.028 0.98 −0.3 to +0.3

Range 7;8 to 10;4 7;8 to 10;4
Socioeconomic status (SES; based on postal code; Sociaal en Cultureel 

Planbureau, 2017)
Raw Mean +0.23 −0.030 1.09 0.28 −0.21 to 

+0.73
Range −2.57 to + 2.09 −1.28 to +1.15

Nonverbal intelligence (Raven Progressive Matrices; Raven et al., 2003)
Raw Mean 36 36 0.24 0.81 −3 to +3

Range 23 to 49 26 to 55
Standardized (percentiles) Mean 64 62

Range 17 to 96 20 to 98
One-minute-real-word reading (Een Minuut test; Brus & Voeten, 1979)
Raw Mean 33 62 −8.25 8.9 · 10−12 −36 to −21

Range 5 to 69 31 to 87
Standardized (norm scores) Mean 5* 11

Range 1* to 11 3* to 15
Two-minute-nonce-word reading (Klepel, Van den Bos et al., 1994
Raw Mean 24 56 −8.97 5.1 · 10−13 −39 to −25

Range 3 to 62 27 to 82
Standardized (norm scores) Mean 6* 11

Range 1* to 11 7* to 14
Spelling test (Schoolvaardigheidstoets spelling, Braams & de Vos)
Raw Mean 7 20 −12.1 2.2 · 10−16 −15 to −11

Range 0 to 18 13 to 27
Standardized (percentiles) Mean 13* 53

Range 0* to 59 19 to 94
Expressive grammatical proficiency (Sentence recall task of the CELF-IV; Semel 

et al., 2010)
Raw Mean 31 59 −9 5.8 · 10−13 −34 to −22

Range 12 to 67 32 to 81
Standardized (norm scores) Mean 5* 11

Range 1* to 13 3* to 16

Standardized scores that fall below the normal range are marked with an asterisk* (The normal range included scores from 1 SD 
below the standardized mean (norm scores: M = 10; percentiles: M = 50%) to scores 1 SD above the standardized mean, and thus 
ranged from 8 to 12 (norm scores) or 17% to 86% (percentiles)). The Socioeconomic score is designed such that zero represents the 
average Dutch socioeconomic status score
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Before the start of the real test, we presented children with 28 practice trials to ensure that they 
understood the task. Unbeknownst to the children, we had divided the stream of stimuli into seven 
blocks. The first block (20 trials) and sixth block (60 trials) contained trials in a random sequence 
(“random trials”), whereas the trials in blocks 2 through 5 and in block 7 followed a 10-item 
deterministic, first-order conditional sequence that was repeated six times (thus 60 trials per block 
in total). The sequence, where the numbers 1–4 represent the four locations on the screen (Figure 1), 
was [4, 2, 3, 1, 2, 4, 3, 1, 4, 3]. We refer to these sequenced blocks as “sequence blocks” and to block 6 as 
the “disruption block”. Note that our block structure differs from Lum and Kidd (2012). Their 
experiment consistent of four sequenced blocks (60 trials each block) and one, final random block.

Sentence recall task
We measured children’s productivity of (morpho)syntactic rules with the Sentence Recall Task – 
a subtest of the Dutch Clinical Evaluation of Language Fundamentals test battery (CELF-4-NL; Semel 
et al., 2010). In this task, children are instructed to recall sentences with increasing length and 
complexity. Following the guidelines of the CELF-4-NL, responses are assigned points in relation to 
the number of errors (e.g., omissions, additions, replacements, substitutions, switches, incorrect 
markings) made in recalling the sentence. Children receive three points for fully correct recalls, two 
points for recalls with one error, one point for recalls with two or three errors and zero points for 
recalls with four or more errors, with a maximum number of 93 points. The task terminates when 
a child scores zero points on five consecutive recalls. In total, the sentence recall task consists of 31 
sentences. The average length of the sentences is 11 words, with the shortest sentence consisting of 5 
words and the longest sentence consisting of 19 words. In terms of syllables, the average number of 
syllables per sentence is 17, with the shortest sentence consisting of 5 syllables and the longest sentence 
consisting of 30 syllables. The sentences target different Dutch sentence patterns such as subject–verb 
inversion, as in (1), or subject–verb agreement, as in (2).

(1) Heeft het meisje de bal gevangen? 
Has the girl the ball caught? 

“Did the girl caught the ball?” 
(2) Moeder leest een verhaal voor 

Figure 1. Set up of the serial reaction time task and spatial arrangement of screen locations. Left: a yellow smiley appeared in one of 
these four marked locations. Right: children were required to press the corresponding buttons on a gamepad controller. The 
numbers in the gamepad controller buttons correspond to the numbers of the sequence. Number 1 in the sequence corresponds the 
location at the top of the screen/top button of the gamepad controller. Figure adapted from Van Witteloostuijn (2020), Chapter 4.
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Mother reads a story 
“Mother reads a story” 

Furthermore, the sentences differ in whether they target simple or complex Dutch sentence 
patterns. Following a predefined coding scheme of Van Witteloostuijn (2020) (Chapter 6) 19 out of 
the 31 sentences used in the sentence recall task can be classified as complex sentences (i.e. 6 passive 
sentences and 13 subordinate clause sentences).

Procedure

All children took part in our larger study on the relation between statistical learning and grammar and 
literacy proficiency in children. The total task battery contained more tasks than described here (2 
additional statistical learning tasks and a set of additional language tasks and cognitive tasks). The 
other tasks are described in Lammertink, Boersma, Rispens et al. (2020) and Lammertink, Boersma, 
Wijnen et al. (2020). All children completed the full task battery, and this took two to four sessions per 
child. Each child was tested individually. We randomly allocated each child to one of the six different 
orders in which task administration took place.

Data analysis

Serial reaction time task
We measured accuracy and response time (in milliseconds) of each trial. The accuracy measure served 
as a sanity check (see Descriptive Results), whereas the response time measure was used to assess 
children’s sensitivity to the underlying structure. We hypothesized that if children were sensitive to the 
10-item deterministic sequence, they would show a disruption peak in their response time trajectory, 
such that their response times in the disruption block (block 6) would be longer than their response 
times in the preceding and following sequenced blocks (block 5 and block 7). Also, we hypothesized 
that children with DLD would show a statistical learning deficit, hence that the size of their disruption 
peak would be smaller than the size of the peak in typically developing children. We obtained an 
estimate of the size of the disruption peak by selecting children’s correct responses to trials in blocks 5, 
6 and 7.

In analogy to our earlier work (Lammertink, Boersma, Rispens et al., 2020; Lammertink, Boersma, 
Wijnen et al., 2020), we normalized children’s raw response times so that they could be interpreted as 
optimally distributed z values (see our analysis script at our Open Science Framework (OSF) page: 
https://osf.io/e9w43/and previous work for normalization procedure). Then, we used a linear mixed 
effects model that fitted these normalized response times as a function of ternary predictor Block 
(block 5, block 6, block 7) in interaction with the binary predictor Group (DLD, typically developing 
children) to assess the size of the statistical learning deficit. The random-effects structure of this model 
contained by-subject (N= 70) and by-position (N= 4) random intercepts, by-subject random slopes for 
the main effect of Block and by-position random slopes for the main effect of Group. The ternary 
predictor Block was coded such that the first contrast of this predictor (“DisruptionPeak”) estimated 
the size of the disruption peak, with the disruption block coded as +2=3 and with both sequenced 
blocks coded as -1=3. This predictor disruption peak can be seen as a sanity check, as finding a positive 
(and statistically significantly different from zero) estimate means that we detected learning, pooled 
over both groups of children, in our serial reaction time task. The binary predictor Group was coded 
with DLD as -1=2 and with typically developing children as +1=2. A positive (and statistically 
significantly different from zero) estimate for the interaction between the first contrast of the predictor 
Block and the predictor Group was intended to answer our first confirmatory research question, 
namely whether children with DLD have smaller disruption peaks than typically developing children. 
We assessed statistical significance of both estimates via 95% Profile confidence intervals and wrote the 
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get.p.value function (see Rmarkdown functions script at our OSF) to obtain the corresponding p values 
from the profiles iteratively.

We also computed individual disruption peaks. These individual disruption peaks were used to 
answer our second confirmatory research question: what is the strength of the correlation between 
children’s performance on the serial reaction time task and their performance on the sentence recall 
task? We estimate the strength of this correlation for both groups of children separately. In obtaining 
individual disruption peaks for the children with DLD, we fitted the model described above, but with 
the predictor Group coded as 0 for DLD and as +1 for typically developing. Then, we extracted with 
the ranef function in R (Bates et al., 2015) participants’ (with DLD) random slopes for the predictor 
disruption peak. We used these random slopes as individual disruption peaks. In obtaining individual 
disruption peaks for the typically developing children, we undertook the exact same steps, except that 
the predictor Group was coded +1 for DLD and as 0 for typically developing.

Results experimental study

In what follows, we present only the descriptive results and model estimates that are relevant for our 
data checks or confirmatory hypothesis testing. All other outcomes are available in the main data 
analysis script on our OSF project page: https://osf.io/e9w43/. On that page we also made our raw and 
processed data available.

Descriptive results serial reaction time task
We have no evidence that children with DLD make more (or fewer) errors than typically developing 
children (pooled over blocks 2 through 7: accuracy children with DLD = 92%; accuracy TD children = 
94%, t= −0.63, p= .53, 95% CI accuracy group difference [−0.054%, +0.028%]). After removing 
children’s incorrect responses and their responses faster than 50 milliseconds (RT < 50 milliseconds: 
0.1% in DLD and 0.07% in typically developing children), we calculated the mean raw response times 
(in milliseconds) with their corresponding standard deviations (in milliseconds) for each block and 
each group separately (Table 2). These raw response times and standard deviations are computed for 
ease of exposition only and cannot be used to interpret the strength of effects reported later in this 
paper or to draw any confirmatory conclusions.

Performance on the serial reaction time task
Though not part of our confirmatory hypothesis testing, we did check whether, pooled over both 
groups of children, we have evidence that children learned the sequence. The predictor that estimated 
the size of the learning effect (“DisruptionPeak”) was positive and statistically significantly different 
from zero (Δz = +0.25, t= 8.18, 95% profile CI [+0.19 +0.31, p= 7.4 · 10−9]. Children’s response times 
were thus shorter in the fourth training block and recovery block as compared to their response times 
in the disruption bock. From this we conclude that children can learn the sequence. To obtain an 
estimate of the maximal standardized effect size for this learning effect, we divided the maximal 
absolute raw effect size (i.e., the greater absolute bound of the confidence interval) by the residual 
standard deviation (SD) of the model (residual SD = 0.86). The estimate of the maximal standardized 
effect size is 0.36 (0.31/0.86). This effect size can be interpreted as a Cohen’s d effect size (Cohen, 1988) 
and as it is > 0.20, but < 0.50 it means that we detected a small to medium sized learning effect.

Table 2. Descriptive mean raw response times and standard deviations (in parentheses), both in milliseconds for the sequenced 
blocks and disruption blocks for the children with DLD and without DLD separately. DLD = developmental language disorder.

Block 2 
(sequenced)

Block 3 
(sequenced)

Block 4 
(sequenced)

Block 5 
(sequenced)

Block 6 
(disruption)

Block 7 
(sequenced)

DLD 679 (327) 685 (351) 705 (384) 698 (399) 784 (402) 717 (383)
Typically 

developing
678 (314) 704 (359) 700 (354) 729 (411) 798 (402) 708 (357)
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To answer our first confirmatory research question, we looked at the estimate for the interaction 
between the predictors DisruptionPeak and Group. This estimate was positive (ΔΔz = +0.019): the 
disruption peak was larger in our typically developing children than in our children with DLD, 
although the estimate of the group difference is not significantly different from zero (t= 0.32, 95% 
profile CI [−0.10, +0.14], p=.75). Therefore, we cannot conclude that the size of the disruption peak 
differs or does not differ between typically developing children and children with DLD (Figure 2). The 
maximal standardized difference between both groups of children (i.e. the greater absolute bound of 
the confidence interval for the group-difference divided by the residual standard deviation of the 
model) is 0.16 (0.14/0.86). In terms of Cohen’s d effect size (Cohen, 1988) this effect size is < 0.20, 
meaning that if a DLD-TD difference exists at all, the difference will be small.

Finally, to further explore whether both groups of children separately showed a statistically 
significant disruption peak, we fitted two additional models on the exact same data, but with different 
contrast settings for the predictor Group (with DLD coded as 0 and TD coded as +1 to estimate the 
disruption peak in DLD, and with DLD coded as +1 and TD coded as 0 to estimate the disruption peak 
in TD). The estimate for the size of the disruption peaks in both groups of children was positive (DLD: 
Δz = +0.24; TD: Δz = +0.25) and statistically significantly different from zero (DLD: t= 5.56, 95% 
profile CI [+0.15, +0.32, p= 4.6 · 10−7, point-estimate effect size: 0.28; Typically developing: t= 6.02, 
95% profile CI [+0.17, +0.34, p= 6.2 · 10−8,point-estimate effect size: 0.29). From this we conclude that 
both children with DLD and typically developing children learn the sequence and are thus sensitive to 
the regularities in the input.

Serial reaction time task performance and expressive grammatical proficiency
To answer our second confirmatory research question, we used the cor.test function in R (R Core 
Team, 2018) to compute Pearson correlations between the sizes of children’s individual disruption 
peaks and their scores on the sentence recall task (DLD mean score: 31 points, ranging from 12 to 67 
points; Typically developing mean score: 59 points, ranging from 31 to 81 points, Table 1). In both 
groups, the confidence intervals for the correlation include zero and thus we found no evidence for or 

Figure 2. Model estimates of the Normalized response times to the items across block 5 (sequenced), block 6 (random) and block 7 
(sequenced). Normalized response times are plotted for the children with DLD (black line) and typically developing children (orange 
line) separately.
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against a relationship between children’s size of the disruption peak and their score on the sentence 
recall task (DLD: r (33) = −.33, 95% CI [−.60, +.00]; TD: r (33) = +.18, 95% CI [−.16, +.48], Figure 3).

Split-half reliability disruption peak measure
We also assessed internal consistency of the disruption peak measure as an individual of measure serial 
reaction time task performance. We computed the split-half reliability (Spearman-Brown corrected 
Pearson correlation between the size of children’s individual disruption peak for even items and the 
size of children’s individual disruption peak for odd items). The split-half reliability is 0.62, 
with the 95% confidence interval ranging from 0.38 to 0.76. Ideally, the split-half reliability should 
reach the psychometric standard of r= .80 (e.g., Nunnally & Bernstein, 1994; Streiner, 2003).

Discussion experimental study

The experiment was designed to assess the strength of the association between serial reaction time 
performance and expressive grammar in children with and without DLD. Additionally, we aimed to 
replicate previous findings showing that children with DLD are less sensitive to structural regularities 
in the visuomotor domain as compared to their typically developing peers (see meta-analysis Lum 
et al., 2014). Therefore, we used a serial reaction time task design that is commonly used to assess the 

Figure 3. Descriptive visualization of the correlation between the size of children’s individual disruption peak (centered and scaled, 
vertical axis) and their average points obtained on the sentence recall task from the CELF (centered and scaled, horizontal axis). The 
correlation for children with DLD is plotted with black circles and on the left side. The correlation for typically developing children in 
plotted with black triangles and on the right sight. Each circle and triangle represent the correlation for an individual child. TD = 
typically developing.
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difference in performance between children with and without DLD. The task that we used was based 
on the one used by Lum and Kidd (2012). Lum and Kidd did not compare serial reaction time task 
performance between children with and without DLD, but task designs similar to the set-up of their 
task (see Introduction) have been used to assess the presence of a visuomotoric statistical learning 
deficit in children with DLD (Clark & Lum, 2017; Conti-Ramsden et al., 2015; Hsu & Bishop, 2014; 
Park et al., 2018). Unexpectedly, we observed that both groups of children were sensitive to the 
structural regularities, and we found no evidence for or against a difference in sensitivity between 
children with and without DLD. Given the similarities in design and number of children tested, we 
have no clear explanation for the small DLD–TD difference observed in our study as compared to the 
outcome of the meta-analysis by Lum et al. (2014).

In a second step we investigated the strength and existence of an association between performance 
on the serial reaction time task and children’s sentence recall performance. We found no evidence for 
or against an association in children with and without DLD. While we have no reason to believe that 
the power of our study was too low to detect differences in learning at the group level (we detected 
a small to medium sized learning effect in both groups of children), it was a priori uncertain if the 
number of participants was sufficient to detect an association between children’s serial reaction time 
task performance and their sentence recall performance. We now observe that the confidence intervals 
of our associations ranged from −.60 to +.00 in children with DLD and from −.16 to +.48 in typically 
developing children. The estimated upper bounds of the “standardized” effect sizes for these associa-
tions are R2 = .36 (.602) and R2 = .23 (.482). This means that the true effects lie between 0 and medium 
(as the standardized effect sizes are >0.20 but <0.50, Cohen, 1988). Only if these ranges had been small, 
we could have concluded that we tested sufficiently children to detect the associations.

Another potential explanation for our null result on the association between serial reaction time 
performance and grammatical proficiency may concern the reliability of the disruption peak as an 
individual measure of statistical learning in the serial reaction task (see Arnon, 2019; Siegelman, 
Bogaerts, Frost et al., 2017; West et al., 2017 for discussions of the low psychometric properties of the 
currently available measures to assess individual differences in statistical learning). Our disruption 
peak measure had a split-half reliability of 0.62, with a 95% confidence interval ranging from 0.38 to 
0.76. This is a relatively wide confidence interval suggesting, indeed, that the internal consistency (one 
of the measures of reliability) of our individual disruption peak measure may not be as high as 
preferred and may not approach the psychometric standard of r = .80 (Nunnally & Bernstein, 1994; 
Streiner, 2003).

To put our null result on the association between serial reaction time performance and grammatical 
proficiency within the context of previous work on this topic, we decided to conduct a meta-analysis. 
This meta-analysis also allows us to assess the existence of a potential publication bias. The meta- 
analysis is discussed in the following sections.

Study 2: Meta-analysis

Methods meta-analysis

We used the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement to 
organize the current meta-analysis (Moher et al., 2009). Effect size calculations and statistical analyses 
on the effect size measures were done in R (R Core Team, 2018).

Literature search

A first systematic search was conducted by the first author of this paper in February 2018. The search 
was conducted in five different sources: PubMed, PsycINFO, Education Resources Information Center 
(ERIC), Linguistics and Language Behavior abstracts (LLBA) and Open Access Theses and 
Dissertations (OATD). In addition, the first author also contacted experts in the field (via the 
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LINGUIST List and via the Cogdevsoc list) with requests for access to unpublished data. Altogether, 
this first search yielded 93 unique articles (91 hits via the databases and 2 hits via the mailing lists; see 
flow chart in Appendix A). A second search in PubMed, PsycINFO and OATD, which served as 
a reliability check, was done by a research assistant in September 2018. This second search yielded 13 
additional potentially relevant unique articles that were not in the output of the first search. Finally, 
a third search was conducted by another research assistant in January 2019. This third search was 
conducted as we realized that our initial query focused on studies that included people with DLD/ 
specific language impairment and that therefore, we might have missed articles on serial reaction time 
task performance in typically developing children. This third search yielded 11 additional potentially 
relevant unique articles. Thus, in total we screened 115 unique articles on their title and abstract. If, by 
screening the title and/or abstract, it became clear that the study did not meet the inclusion criteria for 
the meta-analysis (see Inclusion Criteria and Study Selection), then the study was excluded. For 49 
articles or datasets, we read the methods and result sections carefully in order to decide whether or not 
the study met the inclusion criteria. Eventually, 18 articles (15 published articles, 1 preprint and 2 
dissertations) met our inclusion criteria and were included in our database (see Sample Description). 
See our OSF page for Excel spreadsheets with information on why studies were eventually included or 
excluded for analysis.

Inclusion criteria and study selection

Studies were eligible and included in our meta-analysis if they met all of the following criteria:

(1) The study involved the use of a serial reaction time task in the visuomotor domain, comprising 
nonlinguistic stimuli.

(2) The study reported on a measure of children’s grammatical proficiency, or it became clear that 
the authors had information on children’s grammatical proficiency.

(3) The study involved typically developing children and/or children with DLD (or specific 
language impairment) between four and twelve years old. Please note that for studies in 
which typically developing children were compared to a clinical population other than DLD 
(e.g., children with dyslexia, autism spectrum disorder, deaf children), we included only the 
results from the typically developing children. As the criteria for having DLD varied between 
studies, we decided that in order to be classified as DLD, the following criteria would have to be 
met: (a) children were identified as having DLD using scores on a (standardized) language test 
battery that differentiated between children with and without language impairment, that (b) the 
children with DLD and their typically developing peers were matched on nonverbal intelli-
gence, and that (c) children had no history of a neurological disorder and/or emotional delay.

(4) Finally, for the present paper, we only included studies that were conducted before 
September 2018. Our database is community-augmented, however, meaning that it is acces-
sible online via our OSF project page and open to updates (Tsuji et al., 2014).

Sample description

The final sample includes 56 effect sizes pertaining to correlations between an index of serial reaction 
time performance and grammatical proficiency. Twenty-nine of these 56 effect sizes are correlations 
with an expressive grammar index. The other 27 effect sizes are correlations with a receptive grammar 
index. We could not include both grammar types in one meta-analysis, because in the majority of 
studies the receptive grammatical proficiency and expressive grammatical proficiency measures came 
from the same individual children (violating the assumption of independence). A solution to this 
problem could have been to calculate a synthesized effect size of both measures. We had two reasons 
not to do so, however. First, synthesizing these effect sizes requires knowledge of the correlation 
between children’s expressive grammatical proficiency and their receptive grammatical proficiency. 
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These correlations are often not reported. Second, it is yet unknown whether the strength of the 
association differs between expressive and receptive measures of grammatical proficiency. Because our 
experimental study assesses the association with expressive grammatical proficiency, we decided to 
focus on this type of grammatical proficiency. Note, however, that we explored the correlation with 
receptive grammatical proficiency in a separate meta-analysis. Details of this exploratory analysis can 
be found in the Rmarkdown file on our OSF-page.

At this point it should be noted that also within the set of expressive grammar correlations, 
some studies reported more than one correlation from the same sample of children (e.g., they 
reported both a correlation with sentence recall and with sentence formulating). In most of these 
cases, we did obtain the correlation between the two measures of expressive grammar via 
personal communication with the authors and thus, we could synthesize these effect sizes (see 
Effect Size Computation and Synthesized Effect Sizes). After selecting and/or synthesizing effect 
sizes that came from the same sample of children (see Effect Size Computation and Synthesized 
Effect Sizes), the final dataset contained 19 unique correlations between expressive grammar 
(indexed by a sentence recall or sentence completion task) and serial reaction time task 
performance (first-order conditional sequence: N= 13; second-order conditional: N= 6) in 
children with DLD (N= 8 effect sizes, 139 children with DLD) and in typically developing 
children (N= 11 effect sizes, 573 typically developing children).

E"ect size computation

From each study, we extracted the relevant correlation coefficients. If needed, we synthesized effect 
sizes that came from the same sample of children (see Synthesized Effect Sizes). The extracted 
correlations were transformed into Fisher z values with their corresponding variances (Borenstein 
et al., 2009, p. 42, Formula A, Formula B in appendix B). All studies, except the study of Hani (2015), 
reported Pearson r correlations. The study by Hani (2015) reported a Kendall’s tau correlation and 
therefore we first transformed this correlation into Pearson r (Formula C, Appendix B) before 
transforming it into Fisher z.

Synthesized e"ect sizes

There were nine articles that reported multiple correlations between serial reaction time task 
performance and expressive grammatical proficiency in the same group of children. These 
multiple correlations were reported either because children performed multiple serial reaction 
time tasks at different timepoints, or because the authors obtained multiple measures of 
children’s expressive grammatical proficiency (e.g., children did both a sentence recall and 
a sentence formulation task). As already mention above, we cannot include correlations that 
come from the same group of children in one meta-analysis, as that would violate the assump-
tion of independence. Therefore, we either selected (a) only one of the correlations reported or 
(b) we computed (or obtained) a synthesized effect size across the multiple correlations reported. 
We chose option (a) if the multiple correlations were reported for different timepoints, and 
option (b) if multiple measures of expressive grammar were reported. In the case of solution (a), 
we decided to select only the correlation reported for the child’s first serial reaction time task 
session (Desmottes et al., 2016a; Gabriel et al., 2012; West et al., 2020, 2017). This also meant 
that we eventually had to exclude Desmottes, Meulemans et al. (2017), because they only 
reported a SRT-Grammar correlation for the children’s third SRT session. In the case of solution 
(b), we computed (or obtained) a synthesized (combined) effect size, and its associated synthe-
sized variance (formulas D and E; Borenstein et al., 2009, p. 227; Desmottes et al., 2016a; 
Desmottes, Maillart et al., 2017; Kidd, 2012; Kidd & Kirjavainen, 2011; Obeid, 2017; Park 
et al., 2018). The resulting synthesized effect sizes are reported in Table 3. Kidd and 
Kirjavainen (2011) report on correlations between children’s serial reaction time task 
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performance and children’s accuracy on six different Finnish past tense categories. For the 
purpose of this meta-analysis, Kidd provided us (personal communication) the correlation 
between children’s serial reaction time task performance (SRT rebound; raw scores) and chil-
dren’s average raw accuracy score pooled over the six past tense categories. For the remaining 
studies, we calculated the synthesized effect sizes ourselves. The calculation of these synthesized 
effect sizes required knowledge of the correlation between the different measures of expressive 
grammar. For Kidd (2012), Park et al. (2018) and for Obeid (2017), we obtained these correla-
tions from the authors (see our OSF page). Unfortunately, we did not obtain this information for 
the Desmottes et al. (2016a) and Desmottes, Maillart et al. (2017) papers. Therefore, we took 
these correlations from another paper by the same authors (Desmottes et al., 2016b) in which 
they did report the correlations, although for different samples of children.

Data analysis and coding of moderator variables

The main aim of the meta-analysis was to assess the strength of the relationship between serial 
reaction time task performance and expressive grammatical proficiency in primary-school aged 
children. We set out to answer this confirmatory research question with a hierarchical meta- 
analytic random effects model (see rma.mv function from the metafor package, Version 2.0.0 in 
R, Viechtbauer, 2010) in which we fitted the mean weighted correlation as a function of the 
binary moderator Group, with DLD coded as -1=2. and with typically developing coded as +1=2. 
The random-effects structure contained a random intercept for Paper (N= 13). Simultaneously 
we also explored whether the mean weighted correlation is stronger in typically developing 
children than in children with DLD (as the procedural learning deficit hypothesis may predict; 
Ullman & Pierpont, 2005). A positive (and statistically different from zero) estimate for the 
predictor Group may be a preliminary indication that this hypothesis is true.

In a secondary step, we explored whether the mean weighted correlation (when controlling 
for group status) varied by sequence type (first-order conditional versus second-order condi-
tional) or Age. These exploratory analyses were conducted through model comparisons. 
Generally, if moderators affect the strength of the correlation, adding them to the model will 
result in better model fits. With the first model comparison, we compared the “Group-model” 
(as specified above) to the “Group-Sequence” model. In this Group-Sequence model, the effect 
size is fit as a function of the binary moderator Group, the binary moderator Sequence Type 
(with first-order conditional coded as +1=2 and with second-order conditional coded as -1=2) 
and the interaction between both moderators. The second model comparison compared the 
Group model to the “Group-Age” model in which the effect size is fitted as a function of the 

Table 3. Overview of studies for which we computed a synthesized effect size (i.e. average combined correlation between children’s 
performance on the serial reaction time task and their scores on the two measures of grammar proficiency used). Computation of 
these synthesized effect sizes requires knowledge of the correlation between the two measures of grammar proficiency. These 
correlations are reported in the first column. *Correlation between lax test and lax post test (Kidd, 2012) **Correlation between 
children’s SRT rebound score (raw scores) and their overall accuracy score on the past tense task (raw accuracy scores for all six 
categories combined). Obtained via personal communication with Evan Kidd.

Correlation (Pearson r) between 
grammar index 1 and grammar 

index 2
Synthesized effect size (Pearson r) with its corre-

sponding variance (in parentheses)

DLD TD DLD TD
Kidd (2012)* n/a +.10 n/a +.21 (+.0050)
Kidd and Kirjavainen (2011)** n/a n/a n/a +.080 (+.0083)
Park et al. (2018) +.67 +.33 –.24 (+.042) .00 (+.019)
Obeid (2017) n/a +.57 n/a –.043 (+.013)
Desmottes, Meulemans, & Maillart, 2016a +.82 +.38 –.28 (+0.039) –.073 (+.023)
Desmottes, Maillart et al., 2017 +.82 +.38 +.24 (+0.047) +.051 (+.043)
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binary moderator Group, the continuous predictor Age in months (centered and scaled, ranging 
from −2.03 to +0.90) and the interaction between Group and Age.

Results of the meta-analysis

Publication bias
To assess the presence of a publication bias in the present meta-analysis, we analyzed funnel plot 
asymmetry (Egger et al., 1997) with a linear regression on our funnel plot (Figure 4). Visual inspection 
of our funnel plot suggests that the effect sizes are symmetrically distributed and therefore publication 
bias seems unlikely. Using the regtest function in the metafor package (Version 2.0.0) of the statistical 
programming language R (Viechtbauer, 2010), we found no evidence for or against funnel plot 
asymmetry (publication bias) in our sample (z= −0.94, p= .35).

Confirmatory meta-analysis
The model outcome provided no evidence for or against a correlation between serial reaction time task 
performance and expressive grammatical proficiency in the pooled group of children (Fisher z = 0.072, 
SE = 0.051, z= 1.41, p= .16, 95% CI [−0.028, +0.17]). For ease of interpretation, we also transformed the 
Fisher z estimate and its 95% confidence interval back into Pearson r values: the corresponding values 
are: r = .072, 95% CI [−.028, +.17].

Exploratory analyses
In addition to assessing the strength of the correlation between serial reaction time performance and 
expressive grammatical proficiency, we also explored whether the strength of this relationship differed 
between children with and without DLD. The model outcome of the predictor estimated that the 
strength of the relationship is stronger in typically developing children than in children with DLD. 
However, the estimate of the group difference was not significantly different from zero (Fisher z = 
+0.079, SE = 0.10, z= 0.77, p= .44, 95% CI [−0.12, +0.28]; Pearson r = +.079, 95% CI [−.012, +.27])

Figure 4. Funnel plot showing standard error of the effect size Fisher z as a function of the effect size. The vertical line indicates the 
mean weighted correlation. Dots in black are individual effect sizes from children with DLD, dots in yellow represent individual effect 
sizes from typically developing children. The triangle-shaped unshaded region represents a pseudo confidence interval region with 
bounds equal to ± 1.96 SE.
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We also explored whether the mean weighted correlation between serial reaction time performance 
and expressive grammar, controlled for Group status (DLD versus typically developing) differed as 
a function of sequence type (first-order conditional versus second-order conditional) or age. Model 
comparisons revealed that we cannot conclude that this is the case. Neither the Group model versus 
Group–Sequence model comparison (p= .17) nor the Group model versus Group–Age model com-
parison (p= .54) was significantly different from zero.

Finally, as explained in our Sample description section, we also explored the correlation between 
receptive grammar and serial reaction time task performance in a separate meta-analysis. Details of 
this exploratory analysis can be found in the Markdown file on our OSF-page. There was no evidence 
for (or against) the presence of a publication bias in the set of receptive grammar studies (z= .15, p= 
.88). Also, the model outcome provided no evidence for or against a correlation between serial reaction 
time task performance and receptive grammatical proficiency in the pooled group of children (Fisher 
z = 0.051, SE = 0.041, z= 1.24, p= .22, 95% CI [−0.030, +0.13]), nor that the strength of the correlation 
differs (or does not differ) between children with and without DLD (Fisher z = +0.013, SE = 0.080, z= 
0.17, p= .87, 95% CI [−0.14, +0.17]).

Figure 5. Forest plot showing overall and individual mean weighed effect sizes (Fisher z), divided per group. The shaded diamonds 
represent the mean weighed effect size per group (DLD or typically developing). FOC = first order conditional; SOC = second order 
conditional.
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Discussion of the meta-analysis

The present meta-analysis provided a quantitative overview of published and unpublished studies on 
the association between serial reaction time performance and expressive grammatical proficiency in 
children with and without DLD. Summarizing over 19 unique correlations that collectively examined 
139 children with DLD (8 effect sizes) and 573 typically developing children (11 effect sizes), we found 
no evidence for or against the existence of an association between serial reaction time task perfor-
mance and expressive grammatical proficiency in children with and without DLD. The declarative 
memory compensation hypothesis (Ullman & Pullman, 2015) claims that the correlation is smaller in 
children with DLD as compared to their typically developing peers, which may result in a weaker 
overall correlation in the pooled group of children. Therefore, we also assessed whether the mean 
weighted correlation is smaller in children with DLD than in typically developing children. The latter 
could not be concluded. In the General Discussion we discuss some factors that may have contributed 
to these inconclusive results.

In the second part of our meta-analysis we further explored whether the strength of the proposed 
association differed as a function of sequence structure (first-order conditional versus second-order 
conditional) or age. We found no evidence, however, that these factors did or did not moderate the 
strength of the association.

General discussion

The main aim of the present study was to provide an in-depth overview and an evaluation of the 
relation between serial reaction time performance and expressive grammatical proficiency in children 
with and without DLD. In doing so, we first presented the results of our experimental study, which was 
a conceptual replication of previous work on the presence of a visuomotoric statistical learning deficit 
in children with DLD. Unexpectedly, we cannot conclude that we replicated (or did not replicate) 
previous work on this topic. We find no evidence for (or against) the existence of visuomotoric 
statistical learning deficit in children with DLD. We observed that both children with DLD and 
typically developing children learned the sequential structure, suggesting that children with DLD, like 
typically developing children, are sensitive to sequential regularities in the visuomotor domain. Also, 
when using the size of the disruption peak as an individual measure of visuomotoric statistical 
learning, we found no evidence for or against an association between statistical learning and expressive 
grammatical proficiency in our sample of children with and without DLD.

In an attempt to explain these null results, we realized that there was no clear consensus on (a) the 
existence and strength of the proposed association and (b) to what extent the relation is weaker in 
children with DLD than in typically developing children (as proposed, for example, by the declarative 
memory compensation hypothesis Ullman & Pullman, 2015). This motivated us to conduct the meta- 
analysis described in the second part of the paper. The outcomes provide no evidence for (or against) 
an association between serial reaction time performance and expressive grammar, nor evidence that 
the strength of this association differs between children with DLD and without DLD. Also, our meta- 
analysis provided no evidence for the existence of a publication bias, and therefore we cannot conclude 
that the outcomes of the meta-analysis are influenced (or not) by publication bias (note that 
a publication bias has been observed in the literature on statistical learning in children with dyslexia 
by Schmalz et al., 2017 and by; Van Witteloostuijn et al., 2017).

There are various factors that may have contributed to these inconclusive results. Firstly, and as 
mentioned in the Discussion of our experimental study, they may be partially the result of psycho-
metric shortcomings in the currently available measures to assess individual differences in statistical 
learning (Arnon, 2019; Siegelman, Bogaerts, Frost et al., 2017; West et al., 2017). It goes beyond the 
scope of this paper, to again discuss these issues extensively but it should be reiterated that there is 
a methodological debate within the statistical learning literature on how to reliably measure individual 
differences in statistical learning. This debate concerns the improvement of the psychometric 
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properties of individual measures of statistical learning (for suggestions on novel measures of 
statistical learning see, for example: Isbilen et al., 2017; Kidd et al., under review; Lammertink et al., 
2019; Siegelman, Bogaerts, Frost et al., 2017), the use of samples that are too small to detect differences 
in learning between children with and without DLD or to detect associations between statistical 
learning and measures of linguistic proficiency (West et al., 2017), as well as more theoretical 
discussion on what additional factors impact statistical learning performance and the detection of 
an association between statistical learning and other cognitive abilities. Questions explored related to 
this latter point are to what extent statistical learning can be dissociated from other cognitive processes 
as attention and working memory (Arciuli, 2017; West et al., 2020), but also whether statistical 
learning and the reliability of the different measurements of statistical learning are age-dependent 
(for reviews on this topic see Arciuli, 2017; Krogh et al., 2013; Zwart et al., 2019).

Secondly, studies on the relation between statistical learning and other cognitive processes often 
spend very little time discussing the theoretical motivation behind the selection of their tasks (as 
commented on by Siegelman, Bogaerts, Christiansen et al., 2017). As a consequence, the sequential 
structure targeted in the statistical learning tasks is often only tangentially related to structure relevant 
for the linguistic ability that researchers try to predict with their task, let alone to how children acquire 
language in real life. At the same time, the tasks of grammatical proficiency also differ in the 
grammatical structures that they employ, with most standardized measures (like the sentence recall 
task) assessing children’s knowledge of a mixture of grammatical structures. The sentence recall task 
(Semel et al., 2010), for example, measures children’s knowledge of different sentence types (e.g., 
passives, declaratives, relative clause constructions), different morphosyntactic processes (subject– 
verb agreement, past-tense production, pluralization) and likely also other cognitive processes such as 
working memory (Frizelle et al., 2017). The pattern that needs to be learned in the serial reaction time 
task may not be relevant in predicting sensitivity to all these different sentence types and morpho-
syntactic constructions (Kidd & Arciuli, 2016; Mimeau et al., 2016; Misyak & Christiansen, 2012; 
Wilson et al., 2018). Also, among the studies included in our meta-analysis we observe large variability 
in the measures of grammatical proficiency used. It is debatable whether all these different measures 
tap into a similar underlying construct and whether differences in task demands modulate the strength 
of the correlation with serial reaction time task performance. For future studies it may thus be 
interesting to focus on more specific grammatical constructs, preferable grammatical structures that, 
similarly to the serial reaction time task, require sensitivity to sequential information (e.g., children’s 
sensitivity to and comprehension of (non)canonical word order; Montgomery et al., 2017).

Finally, there may be a discrepancy in how acquired knowledge is measured in statistical learning 
tasks versus how acquired knowledge is measured in grammatical proficiency tasks. In the present 
sample of studies, the measures used to assess visuomotoric statistical learning are all processing-based 
(i.e. based on response times), whereas the measures used to assess grammatical proficiency are all, 
except for Clark and Lum (2017), accuracy-based. Processing-based measures may be more sensitive 
to implicit knowledge representations, whereas accuracy-based measures may be more sensitive to 
explicit knowledge representations (Franco et al., 2015; Isbilen et al., 2017; Misyak et al., 2010). This 
discrepancy may complicate the detection of an association between the two cognitive systems. In this 
context, it may be particularly interesting to follow publications on a newly developed measure of 
auditory statistical learning by Isbilen et al. (2017) and Kidd et al. (under review). Using a serial recall 
as a measure of auditory statistical learning, these researchers show that adults (Isbilen et al.) and 
children (Kidd et al.) repeat trained sequences of syllables better than foils. Given the similarity in how 
acquired knowledge is measured with this serial recall measure of statistical learning and how language 
proficiency is measured with the sentence recall task (e.g., both measures are based on recall), it would 
be interesting to investigate whether stronger correlations with sentence recall performance are 
observed for the “recall” measures of statistical learning as compared to the currently available 
measures of statistical learning.
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Conclusion

Neither our own experiment nor our meta-analysis provides any evidence for the existence of an 
association between serial reaction time performance and expressive grammatical proficiency in 
children with and without DLD. The confidence interval of the meta-analysis (Pearson’s r from 
−.028, to + .17) is compatible with a non-existent association, but also with a small-to-medium- 
sized association. We speculate that such an association may exist only if (a) the targeted structure in 
the statistical learning task is meaningfully related to the target structure in the grammatical profi-
ciency task and (b) both measures represent the same represent the same response type of the 
participant. Overall, it may be that visuomotoric statistical learning is associated with expressive 
grammar but that we encountered methodological problems in its detection. Taken together, we 
cannot claim yet that a visuomotoric statistical learning deficit is or is not associated with the language 
problems observed in children with DLD.
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