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Abstract 
Humans learn much about their language while still in the 
womb. Prenatal exposure has been repeatedly shown to affect 
newborn infants’ processing of the prosodic characteristics of 
native language speech. Little is known about whether and how 
prenatal exposure affects infants’ perception of speech sound 
segments. Here we simulated prenatal learning of vowels in 
two virtual fetuses whose mothers spoke (slightly) different 
languages. The learners were two-layer neural networks and 
were each exposed to vowel tokens sampled from an existent 
five-vowel language (Spanish and Czech, respectively). The 
input acoustic properties approximated the speech signal that 
could possibly be heard in the intrauterine environment, and 
the learners’ auditory system was relatively immature. Without 
supervision, the virtual fetuses came to warp the continuous 
acoustic signal into “proto-categories” that were specific to 
their linguistic environment. Both learners came to create two 
categorization patterns and did so in language-specific ways, 
primarily on the basis of the vowels’ first-formant 
characteristics. Such prenatally formed proto-categories were 
not adult-like in that they entirely collapsed some of the native-
language contrasts. At the same time, the categories reflected 
features of the adult language in that they were language-
specific. These results can inspire future work on speech and 
language acquisition in real young humans. 

Keywords: prenatal learning; speech sound acquisition; 
vowels; models of language development; neural network 

 

Introduction 
Humans start to learn about their native language well before 
they are even born. At birth infants (or near-term fetuses) 
recognize the voice of their mother over a female stranger, 
their native language from an unfamiliar one, and recognize 
a rhyme they had heard during the last weeks of intrauterine 
development (Mehler et al., 1988; Moon, Cooper, & Fifer, 
1993; DeCasper & Spence, 1986; Kisilevsky et al., 2009). 
The global prosodic, or suprasegmental, patterns of native-
language speech are thus learnable, and begin to be learnt, 
even before an individual is born (Abboub, Nazzi, & Gervain, 
2016). Besides their prosodic patterns, languages are 
distinguished by how they implement the individual speech 
sound segments: the number and acoustic properties of 
vowels and consonants differ vastly across languages and 

language varieties. Contrary to the acquisition of prosody, 
however, the acquisition of native-language segmental 
phonology was typically assumed to start only after a child is 
born (see e.g. the timeline in Kuhl, 2004). Here we challenge 
that assumption and employ a computational model to test 
whether language-specific perceptual categorization of 
segmental vowel categories could begin before birth. 

Recent work suggests that (some) segmental categories of 
native-language speech could, comparably to the 
suprasegmentals, begin to be acquired already during 
intrauterine development. Moon, Lagercrantz, and Kuhl 
(2013) tested American English and Swedish newborns in a 
high-amplitude sucking paradigm on discrimination of 
within-category variants of an American English /i/ and a 
Swedish /y/. Overall, the infants suckled more to the variants 
of the non-native vowel than to the variants of the native 
vowel. This result was interpreted as evidence for a stronger 
within-category discrimination – and thus lesser extent of 
perceptual warping, or categorization – for the non-native 
vowel phoneme. One might question to what extent the 
Swedish /y/ and the American English /i/ differed 
perceptually from an American English /u/ and Swedish /i/, 
respectively. Nevertheless, the language-specific 
performance of the newborn infants suggests that prior 
experience with the ambient language (i.e. prenatal and/or 
short post-natal) is what affected the infants’ behavior at the 
time of the experiment. 

Although not testing the effects of naturalistic language 
exposure, several other studies demonstrate that before and at 
birth, humans can learn about the speech sounds in their 
environment. Cheour et al. (2002) showed that several hours 
of overnight auditory training with frequent [i]’s and rare [ɨ]’s 
and [y]’s helped Swedish newborns to perceptually 
distinguish amongst those vowels at post-test. Along similar 
lines but this time with auditory training done over several 
weeks before birth, Partanen et al. (2013) found facilitating 
effects of prenatal exposure on newborns’ discrimination of 
vowel length and vowel pitch. It thus seems that fetuses learn 
from exposure to the ambient speech sounds. 

The ambient speech signal for a developing fetus is, 
however, different from the speech signal that infants learn 
from after they are born. A relatively large body of research 
addressed the intrauterine (speech) sound properties. Despite 
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some variation in the reported cut-off frequency values and 
attenuation degrees, the findings indicate that, in utero, the 
externally generated acoustic signal below 500 Hz or even 
1000 Hz is well preserved and that higher frequencies get 
progressively attenuated (e.g. Gerhard & Abrams, 1996; 
Richards et al., 1992). It is thus primarily temporal and low-
frequency information that can guide the prenatal learning of 
speech (Granier-Deferre et al., 2011). This explains why 
near-term fetuses and newborns demonstrate language-
specific perception of prosody, i.e. temporal and intonational 
patterns that are inherently realized within the low-frequency 
range. 

At the segmental level, adults’ recognition of phonemes 
from intrauterine recordings of speech seems to be mainly 
cued by the sounds’ first formant (Querleu et al., 1988), 
which is the lowest of the vocal tract resonating frequencies 
and in adults typically ranges from 200 Hz to 1200 Hz. The 
ideal candidates for prenatal learning are vowels because, 
compared to most consonants, they are loud and are 
distinguishable in the low- to mid-frequency range (mostly 
by their first two, and sometimes the first three, formant 
frequencies). Arguably, the main cue on the basis of which 
fetuses learn to categorize vowels in the ambient speech 
signal (if they do perceptual categorization at all) will be the 
lowest, i.e. the first, formant (F1). The prominent role of F1 
in prenatal learning is quite intuitive but it remains unclear 
whether and to what extent individual vowel categories could 
be in utero distinguished solely on the basis of their F1 
properties, and whether and to what extent these would 
interact, or collide, with information from the second formant 
(F2) or higher ones. 

Computational modelling can help examine the potential 
fetal and perinatal learning processes without the need to 
recruit the rather sensitive population and measurement 
techniques. Seebach et al. (1994) presented neural-network 
simulations of prenatal acquisition of plosive place of 
articulation. Seebach et al.’s neural network learned to 
categorize three plosive places of articulation [pa], [ta], [ka], 
and did so on the basis of acoustic information in lower as 
well as higher-frequency range. 

To get a picture of how prenatal acquisition could unfold 
for vowels we simulated unsupervised intrauterine learning 
of five-vowel inventories. The goals were to find out (1) 
whether and on which vowel dimensions, fetuses could 
perform perceptual warping, or categorization, and (2) 
whether they could do so in language-specific ways. We 
employed a biologically plausible model, a two-layer 
symmetric neural network, and had it listen – inside the 
womb – to vowels’ first three formants. Two learners were 
simulated: one listening to Spanish and the other listening to 
Czech (both these languages contrast 5 short vowel 
phonemes and slightly differ in some of the vowels’ acoustic 
realizations). The resulting perceptual behavior was 
evaluated to see whether categorical-like structures emerged 
and whether they were specific to the learners’ ambient 
language. 

Experiment 

Network 
Prenatal learning of vowels is simulated here with a 
bidirectional neural network that has previously been used to 
successfully demonstrate several phonological phenomena, 
such as category creation or auditory dispersion (Boersma, 
Benders, & Seinhorst, 2020). When exposed to the sounds of 
a 5-vowel language at some point after birth, this network 
comes to successfully create the 5 adult-like phoneme 
categories (Boersma, Chládková, & Benders, in prep.). 

The network has two layers, which a phonologist might call 
levels of representation. As illustrated in Figure 1, the 
bottom, auditory layer consists of 33 nodes. These 
correspond to the auditory frequency range from 4 to 28 ERB 
and thus represents a part of the basilar membrane (the 
distance between two adjacent nodes is 0.75 ERB). The 
second layer represents a higher, abstract level of processing, 
and we may call it the phonological form. The phonology 
layer consists of 15 nodes. We are using a 5-vowel system for 
network training and expecting category creation; in the ideal 
scenario that a learner acquires 5 categories, reserving 3 
nodes for each category seems reasonable (note that we do 
not force the network to create 5 categories exactly).  

There are connections across all nodes between the two 
layers, as well as within layers. In the network’s initial state 
all connections between the layers have random low weights 
(ranging from 0 to 0.1). The connections within layers are 
inhibitory and held constant (set at -0.1 and -0.25, within the 
auditory and the phonological layer, respectively). 

 
Figure 1: The neural network before learning. 

Input 
The virtual learner is to be exposed to Spanish or Czech 
vowels (see Figures 2 and 3, and Table 1; data from 
Chládková et al., 2011, 2019). The network is trained with 
auditory data transformed to approximate the intrauterine 
speech sound acoustics. 

Since the values of the reported acoustic modulations vary 
across studies, we base our model on the transformations 
reported in Richards et al. (1992), who found that: “Low-
frequency sounds (125 Hz) generated outside the mother 
were enhanced by an average of 3.7 dB. There was a gradual 
increase in attenuation for increasing frequencies, with a 
maximum attenuation of 10.0 dB at 4 kHz.” (p.186) 

According to the definition of the unit decibel, 
enhancement by 3.7	%& means an increase in sound intensity 
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by the factor of 10!.#$ which is approx. 2.34, whereas 
−10	%& would mean a decrease by the factor of 0.1.  

 
!"#$%	'()('	[%+] = 10 × log!" #

#!
  

 
The increase in attenuation seems to be gradual. We could 

apply a linear approximation in order to predict the factor of 
increase or decrease for other frequencies. The equation of a 
line passing through the two given points can be expressed as 
follows: 

 
4 = max	(0.1, −0.00058 × > + 2.42) 

 
where , is frequency measured in Hz and the obtained 

value of - will be the intensifying factor for the given 
frequency. The value of p will always be at least 0.1, since 
that is the factor corresponding to the reported maximal 
attenuation at 4kHz (Richards et al., 1992). 

 
 

Table 1: The formant values of Spanish and Czech vowels (in 
ERB). Means and between-speaker standard deviations from 
10 Castilian Spanish and 17 standard Czech female speakers. 
 

Spanish vowels 
 /i/ /e/ /a/ /o/ /u/ 

F1 mean 
(sd) 

8.88 10.67 13.63 11.12 9.35 
(0.54) (0.47) (0.31) (0.41) (0.37) 

F2 mean 
(sd) 

22.97 21.57 19.46 16.36 14.67 
(0.50) (0.50) (0.51) (0.49) (0.55) 

F3 mean 
(sd) 

24.41 23.99 23.54 23.17 23.91 
(0.45) (0.49) (0.57) (1.74) (0.63) 

Czech (short) vowels 
 /i/ /e/ /a/ /o/ /u/ 

F1 mean 
(sd) 

8.93 11.34 12.99 9.47 8.15 
(0.80) (0.87) (1.06) (1.25) (0.49) 

F2 mean 
(sd) 

21.99 20.58 18.00 15.86 15.14 
(0.93) (0.42) (1.18) (0.98) (1.31) 

F3 mean 
(sd) 

24.09 23.74 23.12 23.94 23.94 
(0.60) (0.46) (1.43) (0.71) (0.71) 

 

Training 
The network is trained in a bottom-up direction, in 40.000 
steps. At each iteration, a random vowel category is selected 
and its F1-F2-F3 values are drawn from the Gaussian 
distributions defining this vowel’s first three formants in 
ERB (see Table 1 and Figures 2 and 3; the formula for 
converting Hz to ERB is: yERB = 11.17 ln ((xHz + 312) / (xHz 
+ 14680)) + 43). The auditory nodes are clamped (meaning 
that their activities cannot change) and the phonological 
nodes are unclamped (meaning that their activities will 
adapt). The auditory node activities are set with the formula:  
  

∆( = 	0.5 × D4$! × (
(&'$!)"

)" + 4$* × (
(&'$*)"

)" + 4$+ × (
(&'$+)"

)" E 
 

where - is the factor of in-utero increase or decrease of 
energy, . – auditory spreading, / – index of the auditory node 
(from 1 to 33), F1-F3 are the frequencies of the first, second 
and third formant respectively measured on our arbitrary 
scale from 1 to 33. Auditory spreading here is 1.5 times larger 
than in Boersma et al. (2020) to represent the fact that the 
basilar membrane (and the topography in the A1 as well) is a 
bit less developed before than after birth.  

 
Figure 2: A plot of 40,000 F1-F2-F3 Spanish input vowels. 
Color-coding of 5 adult categories, unknown to the learner. 

 
 

 
Figure 3: A plot of 40,000 F1-F2-F3 Czech input vowels. 

Color-coding of 5 adult categories, unknown to the learner. 
 
 

Once the auditory node activities are set (i.e. fetus 
encounters an auditory stimulus), the activity is allowed to 
spread through the network. The activities of the unclamped 
nodes at the phonological layer are initially set to zero and 
during the spreading of activity they are being updated in 500 
small steps according to the following formula: 

 

∆( = F, G H I-.J- − (.
/0112/324	1042)	-

K 

where F, is the spreading rate (in our simulation kept 
constant at 0.01), I-. is the weight of connection between 
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nodes 0 and L, J- is the activity of node 0, and 1% stands for the 
current excitation of node 2. 

After activity spreading, the weights of between-layer 
connections are updated. The weight of a connection between 
an input node 0 in the bottom auditory layer and an output 
node 2 in the top phonological layer is changed according to 
the inoutstar learning rule (Boersma et al., 2020): 

 
Δ"!" = $#(&!&" − ()*+&,	&!"!" − ./+*+&,	&""!" − "0(1ℎ+30&4	"!") 
 

where M$!NJO = "#N!NJO = I(MPℎNR(JS = 0.5, and 3& is the 
learning rate (in our simulation equal to 0.001). The formula 
means that the weight of a connection is strengthened when 
both nodes that it connects are on, weakened when only one 
of the nodes is on, and slightly weakened if none of the nodes 
is on.  

Once the weights are updated, they undergo normalization 
so that the total weight of a node’s connections is kept at a 
fixed value (see Rumelhart & Zipser, 1985), by applying: 

 

I-.	6789:;<=>? = I10@A
I-.

∑ I-.1
.B!

 

 
where 4'% is the current weight of the connection between 

node 0 from the top layer and node 2 from the bottom layer, 
and 4()*+ is the value at which the sum of connection 
weights incoming to node 0 is maintained. In the present 
simulation, I10@A = 0.1 × $, where 5 is the number of 
auditory nodes. 

Evaluation 
When the network reaches an equilibrium, i.e. when the 
connection weights no longer change with training, we 
evaluate how the learner perceived an F1-F2-F3 combination 
typical for each of the five adult vowel categories. During 
evaluation, auditory nodes are clamped and the respective F1-
F2-F3 auditory nodes (and their neighbors) are activated, and 
activity is allowed to spread through the network causing a 
particular activity pattern at the unclamped phonological 
level. Figures 4 and 5 show, for each language, how the 
learner perceived a typical rendition of each of the five adult 
phonemes. The activation patterns at the phonological layer 
reveal whether the learner warps the auditory space into 
category-like structures. 

Let us first examine the outcome of Spanish-exposed 
network. As can be seen in the top left corner of Figure 4, an 
incoming sound [i], i.e. the F1-F2-F3 of the adult phoneme 
/i/, activates the auditory nodes corresponding to [i]-like low 
F1 and high F2 and F3 . Hearing this particular sound [i] also 
activates some nodes in the phonology layer, namely nodes 
4, 6, 7, 8, 9, 12, and 13 (counting at the top layer from left to 
right). The same phonological nodes are activated upon 
hearing three other sounds, namely [e], [o], and [u]. This 
means that the four vowels [i], [e], [o], and [u], all of which 
differ in their acoustic F1, F2, and/or F3 values, share a 
discretized specification at the level of phonology. The sound 
of [a] does not activate any of the phonological nodes that are 

relevant for [i], [e], [o], and [u], but elicits a unique distinct 
pattern at the layer of phonology, namely, nodes 1, 2, 3, 5, 
and 14. This means that the Spanish virtual learner perceives 
[a] as a one category and she perceives [i]-[e]-[o]-[u] as 
another category. The vowel /a/ is thus perfectly 
distinguishable from any of the other four Spanish vowels. At 
the same time, the adult /i/, /e/, /o/, and /u/, are for the (near-
term) Spanish-exposed fetus overlapping and hardly 
discriminable from each other.  
 

 
 

Figure 4: The Spanish-exposed network after learning: 
perceiving typical realizations of each of the 5 native vowels. 
Font color-coding of sound as in the scatter plot in Fig. 2. 
 
 
 

 
Figure 5: The Czech-exposed network after learning: 
perceiving typical realizations of each of the 5 native vowels. 
Font color-coding of sound as in the scatter plot in Fig. 3. 

 
 
The fetus exposed to Czech comes to warp the auditory 

signal into slightly different categories. Figure 5 shows that 
there is a single pattern of phonological activity for the 
sounds [a] and [e], namely, nodes 1, 4, 8, 10, 11, 13, and 14 
(perhaps with slightly varying category goodness ratings as 
indicated by e.g. node 13 blackening up more for [a] and less 
for [e] and vice versa for e.g. node 14). Besides that, there is 
a completely different pattern of phonological activity for [i], 
[u], and [o], namely, nodes 2, 3, 5, 6, 7, 9, 12, and 15. 

Both the Spanish-exposed and the Czech-exposed fetus 
formed two category-like structures in their phonology. The 
emerged categories were qualitatively different across the 
two languages. Three out of the four emerged phonological 
structures (namely, the Spanish /i-e-o-u/ and the Czech /a-e/ 
and /i-o-u/) only partially corresponded to how adult speakers 
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of the language categorize their native speech sounds. One 
could thus as well call those “proto-categories”. 

Evaluating the outcomes across the two languages, it seems 
that learners based their categorization exclusively on the F1 
dimension. The Czech fetus created one proto-category for 
[a]’s and [e]’s because in Czech /a/ and /e/ are relatively close 
on the F1 dimension. Along the same lines, Czech short /i/, 
/u/, and /o/ have relatively similar F1 values, which – despite 
the fact that /i/ is rather far from /u/ and /o/ on the F2 
dimension – lead the Czech-exposed fetus to group them into 
a single proto-category.  

Discussion 
We simulated prenatal learning of vowel inventories from 
two languages. Our virtual learners were modeled as two-
layer symmetric neural networks where the bottom layer 
corresponded to the basilar membrane and the upper layer to 
a more abstract, “phonological”, level of representation. 
These two-layer neural nets had been previously shown to 
exhibit phonological learning behaviors such as (post-natal) 
category creation or auditory dispersion (Boersma et al. 
2020). To simulate learning in individuals with a relatively 
immature auditory system, our learners’ basilar membrane 
had a less accurately developed topography than that of 
previously reported virtual language learners. To simulate 
learning in utero, before reaching the basilar membrane the 
input underwent modulations that are typical of the sounds’ 
passing from the external to the intrauterine environment. 

Prenatal learning of vowels was assessed for two five-
vowel languages that are similar to one another in the number 
of vowel phonemes that they contrast but slightly differ in 
how they implement some of the phonological categories 
acoustically. The languages were Castilian Spanish and (the 
short phonemes of) standard Czech. A Spanish and a Czech 
fetus were each trained with 40,000 vowel tokens drawn from 
their respective (mother’s) language, hearing each token’s 
(modulated) first, second, and third formant values. Training 
was unsupervised, meaning that the learner did not know 
which vowel category was intended, which is the only 
learning mechanism plausible in utero as the fetus does not 
have access to any other cues (e.g. visuals on objects that is 
being talked about) that could inform them on the intended 
category membership, and neither did they how many 
categories they should eventually acquire. 

Both the Spanish and the Czech learner came to 
perceptually categorize the continuous auditory world. Their 
categorization of vowels was not adult like: they did not warp 
the auditory space into the five adult categories but each 
arrived at two category-like structures. Interestingly, even the 
few categories that the learners created were specific to the 
language that they had been exposed to. The Spanish-exposed 
fetus created one precategory for the [i-e-o-u] sounds and one 
for [a]’s. The Czech-exposed fetus created one proto-
category for [i-o-u] sounds and one for [a-e] sounds. Given 
the vowel acoustics in each language, it is apparent that the 
learners’ perceptual categorizations are based on the vowels’ 

first formant (in line with the observations in e.g. Querleu et 
al., 1988, and McCarthy, Skoruppa, & Iverson, 2019). 

The argument that humans may perceptually categorize 
vowels in language-specific ways (perhaps entirely) on the 
basis of the vowels’ F1 does not align with the results of 
Moon et al. (2013) who reported language-specific warping 
effects for vowel differences cued primarily by F2 (and 
higher formants). An explanation might be that in the tested 
infants, the warping of F2 occurred within the few days or 
hours that the newborns had before the experiment was 
administered. Possibly, the individuals might have first 
developed a coarse perceptual categorization of F1 in utero 
(as suggested by the present simulations). Once born, they 
could have promptly started warping also the suddenly well 
audible and structured F2 (and higher formant) space and 
exhibit those newly-acquired F2 categorization effects in the 
experiment. Learning to categorize within several hours or 
days of exposure is not unlikely since infants can reportedly 
learn novel speech sound contrasts even after brief, several-
minute, exposure (Maye et al., 2008; Wanrooij et al., 2014). 

Conclusions and Future Research 
We extend on previous modeling work that found 

(language-specific) bottom-up perceptual categorization of 
speech sounds through a distributional learning mechanism 
(such as Guether & Gjaja, 1996; Vallabha et al., 2007). Our 
simulations suggest that language-specific categorization 
behavior acquired through unsupervised learning could 
develop already in utero. 

The learners in our simulations developed rough rather 
than precise representations of the ambient language 
environment. Nevertheless, those coarse perceptual 
categorizations make predictions for both language general 
as well as language-specific effects in vowel discrimination 
(that humans might exhibit at around the time of birth 
perhaps). 

Both virtual individuals came to be able to distinguish /a/ 
from /i/ and from /u/, which means that /a/-/i/ and /a/-/u/ 
should be reliably discriminated (and perceived as a between-
category difference) by both a Spanish and a Czech near-term 
fetus or newborn infant. Human fetuses and newborns, as 
well as non-human animals, indeed discriminate these vowel 
contrasts (Kujala et al., 2004; Shahidullah & Hepper, 1994; 
Baru, 1975). Since even animals who are not exposed to 
human language do so, these discrimination capabilities can 
be driven by the large acoustic F1 distance between /a/ and 
the other two corner vowels and not necessarily by perceptual 
warping. 

A more interesting situation occurs for the less salient 
vowel differences. After learning, the two fetuses differed in 
how they distinguished, for instance, /a/ from /e/ and /e/ from 
/o/. A Spanish infant may, at birth, not be able to tell apart /e/ 
from /o/, unlike the Czech infant who will differentiate the 
two vowels /e/ and /o/ quite reliably. On the contrary, the 
Spanish near-term fetus or newborn infant will distinguish 
between /a/ and /e/ in her parents’ speech, while a Czech 
individual of the same age might have troubles doing so. 
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Our model needs to be developed further to account for 
speech sound learning on other dimensions (of which 
duration is a particularly intriguing one) and of other classes 
of sounds. We have shown that already with 5-vowel 
inventories, the model provides for informed hypotheses 
about language-specific listening in speech perception 
experiments with newborn infants, who had – to date – been 
mostly considered universal listeners not perceiving speech 
sounds in language-specific ways. 
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