Auditory cues determine allomorphy

Vocalized and non-vocalized prepositions in Czech

Kateřina Chládková

Phonetic Sciences, University of Amsterdam

I. Non-syllabic prepositions

non-vocalized form	vocalized form	meaning
k	ke	'to'
V	ve	'in'
S	se	'with'
Z	ze	'from'

Always vocalized:

- ke kolu 'to a bike'
- Always non-vocalized:
- k tomu 'to that'
- k autu 'to a car'

Both **vocalized** and **non-vocalized**:

ke psovi 30 % – k psovi 70 % 'to a dog' ke škvíře 90 % – k škvíře 10 % 'to a chink' ke plotu 10 % – k plotu 90 % 'to a fence' ke psu 90 % – k psu 10 % 'to a dog'

← Previous Explanations → Articulatory ease

- **BUT**: no problem with producing complex clusters such as /ks/, /sk/, /pstr/, why not /ksk/ then?
- Yers
- BUT: predicts *k kolu, *se ptákem
- not transparent anymore

⇒ ONSET COMPLEXITY MATTERS

II. The explanation I propose: prepositional vocalization is listener-oriented

Perceptual ease

- the $/\epsilon/$ is inserted so that the listener can recover the preposition
- auditory cues almost exclusively determine the choice between the vocalized and non-vocalized prepositional forms
- the speaker has no articulatory difficulty with e.g. [kx] but the listener would not be able to recover the preposition
- OCP-like effect (McCarthy 1986, Rubach 2000, Boersma 2000)
- structural constraints against what can be a word contribute as well (cf. ke psu BUT k psovi)
- /ε/ inserted in SF (because if present it is stressed)
- UF prefers |k| (k is much more frequent)
- simulations show that such a grammar is learnable

III. The analysis

- modeled in Bidirectional Phonetics and Phonology in parallel BiPhon (Boersma 2007, 2008)
- 5 levels of representations used in the present analysis (the Tableaus below collapse the Aud.F. and the Art.F.)
- constraints that operate at a level of representation and constraints evaluating the mapping between levels
- Stochastic Optimality Theory as the evaluation strategy

IV.a Simple onsets

|k + kolu| /.kε.ko.lu./ [kεkolu]

 $[k\epsilon + kolu] / .k\epsilon.ko.lu. / [k\epsilonkolu]$

- $*[C_iC_i]_{Art} \rightarrow do not produce two adjacent identical separate$ consonantal articulatory gestures
- */CC/ [_C:] → an auditorily prolonged single consonant that follows a pause does not correspond to two consonantal segments in the SF
- */ / $[x] \rightarrow$ the presence of auditory events does not correspond to the absence of a segment in the SF

Production of <to +="" a="" bike="">:</to>								
ranking value	100	100	100	100	80	50		
	* <to></to>		*/CC/	**//		* <to></to>		
<to +="" a="" bike=""></to>	kε	$*[C_iC_i]_{Art}$	[_C:]	[x]	DEP	[k]		
k + kolu /.kko.lu./ [kkolu]		*!				*		
[k + kolu /.kko.lu./ [kːolu]			*!			*		
k + kolu /.kko.lu./ [kεkolu]				*!		*		

Failed comprehension of [kxolu] when <to + a bike> intended:

·				J						
ranking valu	ie 100	100	100	100	100	80	80	50	50	50
	* <to></to>	>	*/CC/	**//	**/x/			* <to></to>	* <coke<sub>Acc. ></coke<sub>	* <a bike<sub="">Acc. >
[kːolı	J]	$*[C_iC_i]_{Art}$	[_C:]	[x]	[]	MAX	DEP	k	[kolu]	[kolu]
/.ko.lu./ kolu <coke<sub>Acc.</coke<sub>	>								*	
/.ko.lu./ kolu <to +="" a="" bike<="" td=""><td>> *!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td></to>	> *!									*
/.ko.lu./ $ k + kolu < to + a bike$	>					*!		*		*
/.kɛ.ko.lu./ $ k + kolu < to + a bike$	>				*!		*	*		*
/.kko.lu./ k + kolu <to +="" a="" bike<="" td=""><td>></td><td></td><td>*!</td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>*</td></to>	>		*!					*		*

IV.b Cue constraints: Complex onsets

Dissimilar consonantal cues auditorily = different segments in the SF.

C = /place/ [formant] + /manner/ [noise, silence] + /voicing/ [periodicity] /k/ = velar + plosive + voiceless; /p/ = bilabial + plosive + voiceless; /s/ = alveolar + fricative + voiceless

optimally: /CCC/ = 8 cues, /CCCC/ = 10 cues

 \Rightarrow /kps/ = 6 different cues

• $*/CCC/[6cue] \rightarrow$ 6 different consonantal cues do not correspond to 3 consonantal segments in the SF

[10cue]/CCCC/<<[9cue]/CCCC/<<*[6cue]/CCCC/... etc.*[6cue]/CCC/<<*[6cue]/CCCC/... etc.

Cue constraints interact with DEP:

ranking value		80.1	80		frequency
	*[7 <i>cue</i>] / <i>CCCC</i> /	*[6 <i>cue</i>]		*[7 <i>cue</i>]	of this
	/CCCC/	/CCC/	DEP	/CCC/	winner
1. < to + a fence >					
				*	77%
k + plotu /.kε.plo.tu./ [kεplotu]			*!		23%
2. < to dogs >					
		*			48%
$\gg k + psum / .ke.psum. / [kepsum]$			*		52%
3. < to + a chink >					
k + ∫kviːr̞ε /.k∫kviː.r̞ε./ [k∫kviːr̞ε]	*!				19%
k + ∫kviːr̞ε /.kε.∫kviː.r̞ε./ [kε∫kviːr̞ε]			*		81%

V. When the cue constraints are not enough

Both *ke psovi* and *k psovi* are attested,

and we also observe ke psu (but NOT k psu). (all are <to + a dog >)

This cannot be handled by the cue constraints introduced above.

- ⇒ there are three structural constraints:
- *FEETUN → feet are not monosyllabic
- MINWORD → a light monosyllable is not a prosodic word
- *ONSETCCC → onsets are not composed of 3 or more segments
- these constraints work both in HG (see Tableau on the right),
- as well as in OT under the local conjunction approach (Smolensky 1997).

constraint weight		10	5	5	
	DEP	*OnsetCCC	MinWord	*FEETUN	harmony
\ll <to +="" us=""> k + narm /.knarm./</to>				-1	-5
<to + us> $ k + narm / .ke.narm./$	-1				-15
<to + a dog $>$ $ k + psu /.kpsu./$		-1	-1	-1	-20
<pre></pre>	-1				-15
\ll <to +="" dogs=""> k + psuxm /.kpsuxm./</to>		-1		-1	-15
<to + dogs> $ k + psum / .ke.psum./$	-1				-15
<pre>< <to +="" a="" dog=""> k + psovi /.kpso.vi./</to></pre>		-1			-10
<to +="" a="" dog=""> k + psovi /.kε.pso.vi./</to>					-15
			-1	-1	-10
<to +="" cv=""> k + CV /.kE.CV./</to>	-1				-15