

Akanje in a Deep Boltzmann Machine
Searching for phonological categories in a deep unsupervised neural
network trained on one specific case of vowel reduction in Russian

Anastasia Shchupak

Student number 13298321

BA Thesis Linguistics
Supervisor: Prof. P.P.G. (Paul) Boersma

University of Amsterdam
June 2023

2

Abstract

In recent years, advancements in Artificial Intelligence have enabled the development of
increasingly sophisticated models capable of modelling different aspects of cognition.
Phonology, as a purely cognitive process, can be studied using these new advancements. In
this thesis, neural network modelling is employed to explore the underlying principles of
phonological categorisation in vowel reduction. Specifically, a particular case of vowel
reduction in Russian is selected as the primary focus of investigation. The study reveals two
distinct phonological categorisations for language comprehension and language production.
Additionally, the analysis identifies the specific position of the reduced vowel under
examination within the phonological system.

3

Table of Contents

1 Introduction ... 5

1.1 Boundaries of phonology .. 5

1.2 Neural view on phonology .. 8

2 Akanje, one specific case of vowel reduction in Russian... 10

2.1 Existing phonological accounts of akanje .. 12

2.2 Akanje in a deep Boltzmann machine ... 16

3 Methodology .. 16

3.1 Deep Boltzmann machines .. 16

3.2 Training dataset .. 18

3.2.1 Toy language with akanje .. 18

3.2.2 Auditory input representation .. 20

3.2.3 Semantic input representation ... 27

3.2.4 Full input representation ... 29

3.3 Network architecture .. 31

3.4 Training algorithm .. 31

3.4.1 Initial settling phase .. 32

3.4.2 Hebbian learning phase ... 32

3.4.3 Dreaming phase ... 33

3.4.4 Anti-Hebbian learning phase.. 33

3.5 Programming and visualising tools ... 34

4 Analysis ... 34

4.1 Verifying training parameters ... 35

4.2 Modelling comprehension and production of words in the toy language 35

4.3 Proficiency of the network in the toy language ... 37

4.4 Phonological categories in comprehension and production 42

4.5 Phonological category of [ɐ] in comprehension .. 51

4

4.6 Phonological category of [ɐ] in production... 52

5 Discussion .. 55

5.1 Answering the research questions ... 55

5.2 What do different phonological categorisations mean? ... 56

6 Conclusion ... 58

References ... 59

Appendix 1: Proficiency tables .. 63

Appendix 2: Source code of class dbm (MATLAB) ... 68

Appendix 3: Source code of class measure (MATLAB)... 79

5

1 Introduction

1.1 Boundaries of phonology

The nature of phonology and its relation to phonetics has been a topic of discussion in the
field of linguistics for several decades. The exact boundary between these disciplines, and
even the existence of such a boundary, remains a point of disagreement: different theoretical
models provide conflicting viewpoints.

Ohala (1990), for instance, argued against phonetic and phonology being two independent
disciplines, advocating for their close integration rather than mere interfacing. Similarly,
Flemming (2001) developed a unified model of phonetics and phonology, contending that
these disciplines have similar properties and were artificially separated. Flemming suggests
that the uncertainty surrounding the “hypothesized dividing line” between phonetics and
phonology serves to emphasise the artificial nature of their separation. In his unified model,
Flemming proposes the use of a weighted constraint system that incorporates both
phonological and phonetic features.

Prince & Smolensky (1993, 2003) introduced a perspective that seemingly distinguishes
phonology from phonetics by conceptualising phonology as a computational link connecting
the lexicon and the phonetic form. Such a link in Prince & Smolensky’s view serves to resolve
the conflict between the demands of the lexical and phonetic interfaces through the
generation of alternations. This proposal was made within the Optimality Theory (OT)
framework (Prince & Smolensky 1993), depicted schematically in Figure 1. According to
Prince & Smolensky (2003), in this model, markedness constraints support the phonetic
interface and faithfulness constraints act as agents for the lexical interface.

Figure 1. OT grammar model of Prince & Smolensky (1993, 2003)

6

While a computational perspective on phonology is an interesting and a very valuable
viewpoint, the terminology used by Prince & Smolensky, specifically the term “interface”, can
be somewhat confusing. The concept of an interface implies the existence of (at least) two
distinct systems that communicate with each other. And addressing the issue of interface
mismatch between the phonetic and lexical systems through the introduction of an
intermediate phonology component would provide an elegant solution. This intermediate
component could interface with both, phonetic and lexical, components. And inside, it could
act as a translator, performing transformations that satisfy both interfaces. However, in their
model, Prince & Smolensky do not present phonology as an independent system with separate
interfaces to phonetics and lexical semantics. Instead, they include the phonetic and lexical
interfaces within the phonological system itself, employing markedness and faithfulness
constraints to resolve the tension between these interfaces. Consequently, phonetics extends
beyond the confines of phonetic forms and penetrates the phonological grammar component,
resulting in the coexistence of phonetic and phonological features in the surface phonological
form. Thus, the boundary between phonetics and phonology in this model remains
ambiguous.

Another grammar model within the framework of Optimality Theory, presented by Boersma
(2011) and shown in Figure 2, introduces three distinct processing levels: semantic,
phonological, and phonetic. This model, known as BiPhon-OT, effectively distinguishes
between phonological and those processes that can affect phonological representations but
are not phonological in nature. Essentially, BiPhon-OT entirely separates the domains of
semantics, phonology, and phonetics, resulting in an increased number of processing levels
while significantly reducing the complexity of each individual level.

Introducing a distinct semantic level of processing in BiPhon-OT was motivated by the
challenges encountered in determining the correct underlying form (UF) during
comprehension, as previously discussed by Smolensky (1996) and Hale & Reiss (1998).
Smolensky (1996) proposed that constraints ranked for production would also be applicable
for comprehension, suggesting that in the absence of markedness constraints (neutralised due
to identical surface form (SF) in a comprehension process), the most faithful variant would
be selected when evaluating all potential UF candidates. This solution offers a satisfactory
explanation for the comprehension/production dilemma in a child language, which addresses
the issue of why children exhibit more accurate comprehension earlier than production.
However, it falls short when dealing with homophones, as highlighted by Hale & Reiss (1998).
They criticised Smolensky’s approach, noting that in cases of surface phonological merger,
the choice consistently favours the most faithful UF. They presented their own solution:
retaining the entire list of possible UF candidates, which preserves valuable information
during the phonological computation step. However, this means that the phonological

7

component of the grammar alone is incapable of resolving such ambiguity. Boersma (2011)
suggests that this disambiguation is likely to occur at a higher level of processing. This
concept was formalized in the BiPhon-OT grammatical model through the incorporation of a
distinct level of semantic representations.

Figure 2. BiPhon-OT grammar model (Boersma 2011)

Additionally, in contrast to the Prince & Smolensky’s (1993, 2003) approach, the BiPhon-OT
grammar model maintains a distinct separation between phonology and phonetics, treating
them as two independent systems. In BiPhon-OT, the phonological surface form is completely
devoid of phonetic features and serves exclusively for phonological representations. This clear
separation allows phonetics and phonology to exist as distinct systems, interconnected
through the interface represented by cue constraints.

Two additional properties of the BiPhon-OT model, which are crucial for an effective
grammar model, are bidirectionality and parallelism. Bidirectionality refers to using the same
constraints, with the same rankings, in both the production and comprehension processes.
Parallelism makes it possible for each constraint from each level to participate in a single

8

global ranking. This interconnectivity allows for feedback from later levels of processing to
earlier ones, creating an interactive system (Boersma 2011).

Next to the question of separation of phonetics and phonology, there is another aspect of the
relationship between these disciplines, namely the question whether phonology is
phonetically grounded or not. Some researchers advocate for the phonetic motivation of
phonology, arguing that phonological patterns are driven by phonetic factors (Ohala 1990;
Browman & Goldstein 1992; Prince & Smolensky 1993, 2003). In contrast, others propose a
substance-free perspective on phonology, positing that it is not directly tied to phonetic
properties (Hale & Reiss 2000; Blaho 2008; Iosad 2013, 2017; Reiss 2017; Boersma,
Chládková & Benders 2022; Reiss & Volenec 2022). There are also intermediate perspectives
that propose a combination of phonetic grounding and abstract phonological principles (Hall
& Teddiman 2014).

It is important to highlight that in case of being substance-free, in the absence of phonetic
motivation, phonology becomes receptive to any form of phonetic variation, effectively using
the interface between phonetics and phonology to facilitate the transmission of such variation
to the phonological form. The mere possibility of accommodating any form of phonetic
variation grants a significant advantage to the models developed within substance-free
frameworks: their scalability. These models are capable to accommodate the continuous
growth of linguistic data without requiring periodic modifications.

In summary, the distinguishing characteristics of phonological grammars include the
separation of levels, the ability to process information in both top-down and bottom-up
directions, and substance freedom. It is important to note that phonology is not directly
observable in nature, but rather serves as an abstract framework aimed at explaining the
cognitive processes that connect speech sounds and meanings in our minds. Therefore, when
selecting a model, considerations should prioritise the ease of use, its ability to account for
known phenomena, and scalability to accommodate expanding data. Taking these factors into
account, the present thesis opts to employ a bidirectional system that effectively models both
speech production and comprehension along with language acquisition (accounts for known
phenomena), exhibits clear level separation (provides the ease of use), and demonstrates
scalability by effortlessly incorporating additional data without the need for constant
adaptation (is substance-free). The BiPhon-OT grammar model (Boersma 2011) fulfils all
these criteria and is thus an appropriate choice.

1.2 Neural view on phonology

When considering the methods employed for studying phonology, it is important to remember
that we are essentially modelling a cognitive process. In this regard, recent neurobiological

9

research can provide valuable insights. Popham et al. (2021) provide compelling evidence
supporting the semantic alignment hypothesis. They discovered the coexistence of two
interconnected types of cortical areas on both sides of the anterior border of the visual cortex.
The inside-visual-cortex areas exhibit selectivity for specific visual categories, while the
corresponding outside-visual-cortex areas specialise in processing semantic concepts of these
visual categories in language. The presence of these specialised linguistic semantic areas
within the cortex raises questions such as how information from these areas travels to the
phonetic representation of corresponding semantic concepts in primary and secondary
auditory cortex (Leonard & Chang 2014) and back. It is reasonable to hypothesize that this
pathway may be where the abstract categories of phonology are formed and maintained.

In line with the advancements in neurobiology over the past few decades, the development
of artificial intelligence has allowed new ways for studying the brain processes including
those involved in phonology. Prince and Smolensky (1997) showed that optimisation
principles in neural computation could be effectively applied to the theory of grammar. Reiss
and Volenec (2022) take it a step further by postulating that phonology in the 20th century
became neurologically oriented. Supporting a substance-free view on phonology, they argue
that phonological symbols, being neither acoustic nor articulatory, are neurally encoded.

Consequently, one potential research approach involves using artificial neural networks to
model phonological and phonetic phenomena. One example of such modelling is the
simulation of the human brain’s capacity for acquiring a language. By analysing the inner
workings of such models, new hypotheses can be formed regarding how the connection
between speech sound and meaning is organised within the brain. Boersma, Benders &
Seinhorst (2020) propose such an artificial neural network model that accounts for both
phonological and phonetic phenomena of a language, such as category creation and auditory
dispersion. Another study by Boersma, Chládková & Benders (2022) introduces a deep neural
network model along with the learning algorithm which enables the model to learn a simple
toy language presented as a set of five <sound, meaning> pairs. This model is referred to as
BiPhon-NN and is demonstrated by the authors to serve as a neural-network counterpart of
BiPhon-OT. Following training, the authors analyse the model’s hidden levels and identify
categories, emerging from both the phonetic and semantic inputs, which can be interpreted
as phonological features.

The neural network type chosen by Boersma, Chládková & Benders (2022) for modelling is a
deep Boltzmann machine (DBM) (Salakhutdinov & Hinton 2009). The deep architecture of
DBMs, their capability to train on unlabelled data, and their capacity to generate new samples
resembling the training data make them in general a valuable tool for studying cognitive
processes. But even more specifically, as evidenced by Boersma, Chládková & Benders, DBMs
are well-suited for the task of identifying potential phonological categories.

10

The goal of this thesis is to build on the work of Boersma, Chládková & Benders (2022) by
using their model to learn a slightly more complex toy language that contains the
phenomenon of vowel reduction. Specifically, the language under investigation is a small
subset of Russian: twenty-two one- and two-syllabic words, representing a particular case of
vowel reduction known as akanje. The focus of Section 2 will be on existing phonological
analyses of akanje, concluding with a research question and a set of hypotheses. Section 3
will provide a comprehensive description of the methodology, including an overview of the
model, a description of the training dataset, and details of the training algorithm. An analysis
of the obtained results will be presented in Section 4. Section 5 and 6 will offer a discussion
of the implications of the analysis and a conclusion, respectively.

In conclusion, it is important to address the notation used in this thesis, as different grammar
models employ different notations for representing phonological forms. However, for the sake
of consistency, one notation should be chosen. The OT grammar model (Prince & Smolensky
1993) uses forward slashes (//) for underlying forms and square brackets ([]) for surface
forms. On the other hand, the BiPhon-OT grammar model (Boersma 2011) adopts pipes (||)
for underlying forms and forward slashes (//) for surface forms, while reserving square
brackets ([]) exclusively for phonetic representations.

Throughout the rest of this thesis, the BiPhon-OT notation will be used unless stated
otherwise. This decision is based on the author’s intention to differentiate between phonetic
and phonological forms. However, when presenting accounts without such distinction,
additional justification for the use of // or [] will be provided. Moreover, in accordance with
the BiPhon-OT model, angle brackets (<>) will be employed for semantic forms.

2 Akanje, one specific case of vowel reduction in Russian

Phonemes |a| and |o|, when unstressed, can be realised differently across different East Slavic
dialects. For example, speakers of some Russian dialects maintain a distinction between |a|
and |o| when pronouncing |trava| 'grass' and |sova| 'owl' as [traˈva] and [soˈva] respectively.
This distinction, however, is lost in some other Russian dialects, where both phonemes |a|
and |o| are pronounced as a sound that is close to [a]. In such dialects, |trava| and |sova|
might sound somewhat like [trɐˈva] and [sɐˈva], or perhaps [trʌˈva] and [sʌˈva]. This
phenomenon of losing the distinction between phonetic realisations of the phonemes |a| and
|o| in unstressed syllables in Russian is commonly referred to as akanje (Lunt 1979) or akanye
(Enguehard 2019)1.

1 This phenomenon is also observed in Ukrainian and Belarussian dialects and referred to as akannja
in Ukrainian and akanne in Belarussian (Lunt 1979).

11

In a broader context, akanje refers to a specific neutralisation pattern, involving the
neutralisation of all non-high unstressed vowels (including |a|, |o|, and |e|) that result in a
sound close to [a]. It is helpful to use two dimensions to categorise all possible kinds of this
neutralisation: the presence or absence of palatalisation in the consonant preceding the
neutralised vowel and the position of this vowel within the word (Iosad 2012: 522).

Regarding the first dimension (palatalisation of the context), neutralisations that occur after
palatalised consonants are also referred to as jakanje (Kniazev & Shaulskiy 2007) or yakanye
(Enguehard 2019). Some accounts classify these neutralisations apart from akanje, as seen in
Enguehard’s overview of Russian vowel reductions (Enguehard 2019: 114-116). Regarding
the second dimension (position within the word), existing analyses of all types of Russian
vowel reduction, including akanje, unanimously agree on the existence of two degrees of
reduction: moderate reduction, occurring in the syllable immediately preceding the stress, and
extreme reduction, occurring in other unstressed syllables. These terms were coined by
Crosswhite (2000a, 2000b), while other terms such as moderate and radical reduction (Iosad,
2012) or Degree I and Degree II reduction (Barnes, 2007) can also be found in the literature.

The focus of this thesis is specifically on the moderate form of akanje in its narrow sense,
excluding jakanje. Consequently, the analysis is limited to pretonic syllables and to the non-
palatalized context. This means that the analysis essentially addresses the neutralisation of
the phonemes |a| and |o|, because the third possible non-high phoneme in Russian, |e|,
undergoes a reduction to [ɨ] in non-palatalized contexts, rather than to [a], as shown in Figure
3 (Iosad, 2012: 525-526).

Figure 3. Moderate reduction, non-palatalised context (Iosad 2012, p. 526)

Despite the focus on the moderate degree of reduction, the following subsection will provide
an overview of existing analyses of akanje, considering both moderate and extreme degrees.
This is because some researchers view the boundary between phonetics and phonology, as
mentioned in the previous section, precisely between these two degrees of reduction.

12

2.1 Existing phonological accounts of akanje

Phonological analyses of akanje vary from substance-full, accounting for all phonetic
underpinnings, to substance-free, separating phonetic and phonological phenomena. This
section aims to provide an overview of four existing analyses, starting with two substance-
full approaches, and concluding with two substance-free approaches.

Presenting analyses that lack clear separation between phonology and phonetics, while using
the notation that distinguishes phonological surface and phonetic forms (SF and PF,
respectively), might be challenging. This is because in such analyses, SF gives place to both
phonological and phonetic features. For example, despite the phoneme |ɐ| not being part of
the Russian phonological inventory, it does appear in the SF of these substance-full analyses.
It can be explained by the fact that SF in these analyses aims to reflect the actual sound using
the International Phonetic Alphabet (IPA). Considering this motivation, I will use square
brackets to denote SF when describing substance-full analyses below.

According to substance-full phonological accounts of akanje, the phonemes |a| and |o| are
realised as [a] and [o], respectively, in SF of stressed syllables. However, in unstressed
syllables, both phonemes undergo reduction and are realised as either [ɐ] or [ə]. The reduced
form [ɐ] occurs in syllables immediately preceding the stress, indicating a moderate degree
of reduction. The other reduced form [ə] appears in other unstressed positions, indicating an
extreme degree of reduction. Examples illustrating these two degrees of reduction for |a| and
|o| are provided in (2.1a) – (2.1d).

(2.1) Two degrees of vowel reduction in some dialects of Russian: moderate [ɐ] and extreme [ə]

a. |sova| [sɐˈva]
b. |samo| [sɐˈmo]
c. |golova| [gəɫɐˈva]
d. |paradoks [pərɐˈdoks]

‘owl’
‘itself’
‘head’
‘paradox’

Crosswhite (2000a) proposed an analytical approach to explain these two reduction patterns,
suggesting that they arise from two distinct types of reduction that serve different linguistic
purposes: one to improve vowel contrast, and the other to increase articulatory ease. In a
subsequent paper, Crosswhite (2000b) observed that reduced duration often leads to a
decrease in vowel sonority and proposed using the sonority scale, together with foot form
and processes of lengthening under stress, to account for the two distinct phonological
categories of reduction. She argued that her analysis demonstrates the phonetic motivation
behind these two phonological patterns (Crosswhite 2000b: 154). However, being a
substance-full account, it does not identify any inherent problems associated with it.

13

Padgett (2004) employs the Dispersion Theory of Contrast (Flemming 2002) to account for
both patterns of akanje. According to Flemming, phonology is influenced by both articulatory
and auditory constraints. His dispersion theory of contrast suggests that phonology maximises
the number and distinctiveness of contrasts while minimising articulatory effort. However,
Padgett’s analysis did not completely support the Dispersion Theory. It utilized quantitative
phonetic data obtained from an experiment (Padgett & Tabain 2005), which examined more
patterns of Russian vowel reduction in addition to akanje. The phonetic data showed
inconsistent distances between the reduced vowels.

Enguehard (2019) presents a different explanation for akanje’s phonology, which does not
involve any phonetic substance. He suggests that the Russian vowel reduction can be
explained as a quantitative difference between stressed and unstressed syllables in terms of
phonological length, rather than a qualitative change in the sound of the vowel. This expands
on the proposal of Crosswhite (2000b), who suggested that the sonority of vowels is
influenced by the presence of a mora in stressed syllables and in syllables directly preceding
stressed ones. Instead of moras, Enguehard uses the concept of “skeletal slots” to describe
vowels, claiming that there are two of them in a stressed position and one in an unstressed
position.

Barnes (2007) introduces a distinction between phonological and phonetic processes involved
in akanje. According to Barnes, the neutralisation of |a| and |o| in unstressed syllables occurs
in two distinct steps. The first step is purely phonological, involving the reduction of |a| and
|o| to /a/, which is motivated by stress as an abstract structural factor. In the second step,
which is purely phonetic, a raising process takes place: /a/ is raised to [ɐ] or [ə] in syllables
undergoing extreme and moderate reduction, respectively. This raising process is driven by
the articulatory challenge of producing a low vowel, which arises due to the reduced duration
of the vowel.

Barnes’ suggestion has been implemented within the framework of Optimality Theory in two
ways. The first implementation was proposed by Iosad (2012), who shares Barnes’ view of
the phonological and phonetic aspects of akanje. Iosad employs the Parallel Structures Model
of feature geometry (Morén 2003, in: Iosad 2012), offering a comprehensive and
straightforward OT analysis of Barnes’ phonological account of akanje.

The second implementation, carried out by the author (Shchupak 2022), employed the
BiPhon-OT model (Boersma 2011). The analysis yielded successful results in both moderate
and extreme contexts. Examples of the OT tableaus can be observed in Figures 4 and 5. Figure
4 illustrates a tableau for the perception of [sXvY], where X and Y are sounds, the phonetic
representation of which includes their first formant frequency and duration. X and Y can be
denoted as follows: X=[700Hz, 70ms] and Y=[700Hz, 80ms]. This showcases how stress is

14

entering phonology from acoustic data. The list of candidates for this tableau includes various
permutations of the potential phonemes /a/ and /o/, along with different stress patterns for
each permutation. Figure 5 presents a tableau for the production of <head>|golova|, which
displays the parallel working of four distinct levels in BiPhon-OT: <semantic form>,
|underlying form|, /surface form/, and [phonetic form]. While not being exhaustive, this
tableau serves to demonstrate the parallel functionality of the complete model.

Figure 4. BiPhon-OT analysis of perception of [sXvY] (X=[700Hz, 70ms], Y=[700Hz, 80ms])
(performed in 2022)

<head>|golova|
X = [470Hz, 25ms]
Y = [470Hz, 70ms]
Z = [470Hz, 80ms]
U = [700Hz, 25ms]
V = [700Hz, 70ms]
W = [700Hz, 80ms] *<

>
|M

|

/*
o/

NT

*[
lo

w,
 sh

or
t] A

RT

*/
X/

2P
T [

lo
ng

]

*/
a/

T[4
70

Hz
]

*/
o/

T[7
00

Hz
]

*/
a/

NT
[8

0m
s]

*/
a/

T[2
5m

s]

*/
a/

T[7
0m

s]

*/
o/

T[2
5m

s]

*/
o/

T[8
0m

s]

ID
EN

T-
IO

 (V
T)

*/
a/

NT
[4

70
Hz

]

*/
a/

NT
[2

5m
s]

*/
a/

NT
[7

00
Hz

]

*/
a/

NT
[7

0m
s]

*/
o/

T[4
70

Hz
]

*/
o/

T[7
0m

s]

*/
a/

T[7
00

Hz
]

*/
a/

T[8
0m

s]

<head>|golova|
/.go.lo.ˈva./[gXlYvZ]

*
*!

 * *

<head>|golova|
/.ga.la.ˈva./[gUlVvW]

 *! * *
*

* * *

<head>|golova|
/.ga.la.ˈvo./[gXlVvY] *! * * * * * *

☞<head>|golova|
/.ga.la.ˈva./[gXlVvW] * * * * * *

<head>|golova|
/.ga.la.ˈva./[gVlVvW]

 *! *
*

*
*

Figure 5. BiPhon-OT analysis of production of <head>|golova| (performed in 2022)

[sXvY]
X = [700Hz, 70ms]
Y = [700Hz, 80ms]

/*
o/

NT

*/
a/

T[4
70

Hz
]

*/
o/

T[7
00

Hz
]

*/
a/

NT
[8

0m
s]

*/
a/

T[2
5m

s]

*/
a/

T[7
0m

s]

*/
o/

T[2
5m

s]

*/
o/

T[8
0m

s]

*/
a/

NT
[4

70
Hz

]

*/
a/

NT
[2

5m
s]

*/
a/

NT
[7

00
Hz

]

*/
a/

NT
[7

0m
s]

*/
o/

T[4
70

Hz
]

*/
o/

T[7
0m

s]

*/
a/

T[7
00

Hz
]

*/
a/

T[8
0m

s]

/.ˈsa.va./[sXvY] *! * * *
☜/.sa.ˈva./[sXvY] * * * *

/.ˈso.va./[sXvY] *! * * *
/.so.ˈva./[sXvY] *! * *
/.ˈsa.vo./[sXvY] *! * *
/.sa.ˈvo./[sXvY] *! *
/.ˈso.vo./[sXvY] *! * *
/.so.ˈvo./[sXvY] *! * *

The tableaus in Figures 4 and 5 incorporate the following constraints, listed top down as
represented in BiPhon-OT:

1. Lexical constraint *<>|X|, which prevents underlying forms that are not associated
with any morpheme.

2. Faithfulness constraint IDENT-IO (VT), which deprecates changes to the tonic vowel.
3. Structural constraint */o/NT, which disallows unstressed /o/ in the surface form.
4. A series of cue constraints, listed in Table 1.
5. Articulatory constraint *[low, short]ART, which militates against short vowels being low.

Table 1. Cue constraints in BiPhon-OT analysis of akanje (performed in 2022)

Super
high-ranked

High-ranked Middle-ranked Low-ranked

F1 Duration F1 Duration F1 Duration

*/X/2PT [long]

*/a/T[470Hz]

*/o/T[700Hz]

*/a/NT[80ms]

*/a/T[25ms]

*/a/T[70ms]

*/o/T[25ms]

*/o/T[80ms]

*/a/NT[700Hz]

*/a/NT[25ms]

*/a/NT[470Hz]

*/a/T[700Hz]

*/o/T[470Hz]

*/a/NT[70ms]

*/a/T[80ms]

*/o/T[70ms]

Here follow the examples of interpreting the cue constraints. The cue constraint */X/2PT [long]
puts restrictions on the duration of the second pretonic syllable: it cannot be long, specifically
not 70 or 80 milliseconds in the given context. The cue constraint */o/T[700Hz] indicates
that the occurrence of /o/ in a stressed syllable is prohibited when the vowel has a first
formant frequency (F1) of 700Hz. Similarly, the cue constraint */a/NT[25ms] specifies that
/a/ in an unstressed syllable is not allowed when the vowel has a duration of 25 milliseconds.

In summary, this subsection presented an overview of four different accounts of akanje. Two
of these accounts follow a substance-full approach and do not demonstrate a clear separation
between phonology and phonetics. In contrast, the other two accounts adopt a substance-free
perspective, clearly distinguishing between phonology and phonetics. Notably, one of the
substance-free accounts was implemented twice using two different frameworks within
Optimality Theory: the parallel structures model of feature geometry and the BiPhon-OT
model.

16

2.2 Akanje in a deep Boltzmann machine

Section 1.2 discusses the potential advantage of using neural networks in phonological
research, specifically highlighting effectiveness of DBM in detecting phonological categories.
The objective of this thesis is to use a neural network language grammar model to explore
underlying principles of phonological categorisation in akanje. The procedure will include
building a DBM model capable of learning a language consisting of a set of Russian words
that represent the phenomenon of akanje (specifically, its moderate part), training the model
on this language, and subsequently analysing the hidden levels of the model in an attempt to
identify potential phonological categories.

The analysis will address the following questions: will distinct categories for different sounds
emerge? If so, will the neutralised realisation of |a| and |o| form its own category? If such a
category is found, will it exhibit phonological similarities with |a|, |o|, or an equal degree of
similarity to both2? Expectations vary depending on what influences the phonological
representation more: phonetic or semantic representation. In the case of strong phonetic
influence, the new category will be more similar to |a|, because the neutralised sound is
phonetically closer to [a]. In the case of strong semantic influence, the similarity will differ
for different words, depending on which phoneme is neutralised. For example, in the word
<owl>|sova|[sɐˈva] (2.1a), the phonological category of [ɐ] when will be more similar to
|o|. On the other hand, in the word <itself>|samo| [sɐˈmo] (2.1b), the phonological category
of [ɐ] will be more similar to |a|.

3 Methodology

3.1 Deep Boltzmann machines

A deep Boltzmann machine (DBM) is a deep artificial neural network that serves as a
generative model with multiple layers of hidden variables and is capable of training without
supervision (Salakhutdinov & Hinton 2009; Salakhutdinov 2010; Salakhutdinov & Larochelle
2010). It consists of three or more levels of nodes with layers of bidirectional connections
between nodes in different levels, while nodes within the same levels remain unconnected.
Figure 6 illustrates a schematic representation of a DBM used by Boersma, Chládková &
Benders (2022) in their research, consisting of two hidden levels and an input level.

2 To measure phonological similarity between two utterances, the cosine similarity of the network’s
hidden levels will be computed after it has been exposed to the respective utterances, following the
method described by Boersma, Chládková & Benders (2022: 28).

17

Figure 6. Boersma, Chládková & Benders’ (2022) DBM

The input level of their DBM comprised 54 nodes, with 49 nodes dedicated to auditory
representation and 5 nodes dedicated to semantic representation. The auditory nodes were
designed to represent the part of the basilar membrane relevant for hearing F1 and F2,
covering a spectral continuum ranging from 4.0 to 28.0 ERB. This choice was made because
the phonetic representation of utterances in the researched toy language contained
exclusively vowels. In Figure 6, the colours representing connections between nodes indicate
that the network has already undergone training. The connections between levels are depicted
in varying intensities of red and blue, where brighter red signifies a stronger positive weight
of connection, while brighter blue signifies a stronger negative weight of connection.

This network can be trained using a generated sequence of utterances from the toy language,
encoding both auditory and semantic information into the input level for processing.
Following training, the model can be utilised by exposing it to a specific input and considering
the input level to be an output level as well (if unclamped). In this manner, the model can
display its “comprehension” or “production” capabilities, depending on the type of
information used as an input – either auditory or semantic. Boersma, Chládková & Benders
demonstrated that their model successfully learned the toy language. When only auditory
information was provided, their model accurately restored the corresponding semantic
information, and vice versa. Additionally, the analysis of hidden levels of the network
revealed the emergence of categories, leading to the assumption that these categories might
represent phonological categories.

18

3.2 Training dataset

3.2.1 Toy language with akanje

A toy language used in this thesis consists of a set of twenty-two Russian words that represent
the phenomenon of akanje in its moderate form (as described in Section 2). It comprises eight
pairs and two triplets of lexically equivalent words, as shown in Table 2. For both phonemes
|o| and |a|, there are two pairs of words demonstrating akanje, two pairs of words without
akanje, and one triplet in which akanje occurs in two out of the three words. This approach
ensures that each pair or triplet of words always includes one word without akanje, serving
as a reference.

Table 2. Toy language inventory

Russian phonetic form meaning

(lexical) feminine masculine plural feminine masculine plural

|o|

сова совы [sɐvˈa] [sˈovɪ]̈ <owl>

роза розы [rˈozə] [rˈozɪ]̈ <rose>

 кот коты [kot] [kɐtˈɨ] <cat>

 бот боты [bot] [bˈotɪ]̈ <bot>

моя мой мои [mɐjˈa] [moj] [mɐjˈɨ] <mine>

|a|

жара жар [ʐɐˈra] [ʐar] <heat>

жаба жабы [ʐˈabə] [ʐˈabɪ]̈ <toad>

 таз тазы [taz]3 [tɐzˈɨ] <basin>

 бар бары [bar] [bˈarɪ]̈ <bar>

раба раб рабы [rɐˈba] [rab]4 [rɐˈbɨ] <slave>

Each word can be analysed as having two parts: a stem that represents the lexical meaning of
the word and consists of three sounds (CVC), and possibly a suffix consisting of one vowel

3 Final-obstruent devoicing is ignored for simplicity (in real Russian it would be [tas])

4 Final-obstruent devoicing is ignored for simplicity (in real Russian it would be [rap])

19

(V), indicating gender or plurality. For example, the suffixes [a] and [ə] are associated with
feminine forms, the suffixes [ɨ] and [ɪ]̈ indicate plural forms, and the masculine forms are
characterised by the absence of a suffix. Interestingly, in the case of suffixes, [ə] is a reduced
form of [a], and [ɪ]̈ is a reduced form of [ɨ], both representing the extreme form of vowel
reduction. However, it is mentioned here only for the sake of completeness and will not be
the focus of the further analysis. Furthermore, throughout the rest of this thesis, the absence
of a suffix is interpreted as a null sound [∅], rather than the absence of one.

The vowel inventory of the created language is presented in Table 3. Vowels can appear in
the first or second syllable and can be either stressed or unstressed. Although the moderate
form of akanje exclusively occurs in the first syllables, the phonetic qualities of the vowels in
the second syllables are also accurately preserved. This preservation is important because, as
demonstrated by Chrabaszcz et al. (2014), vowel quality is the most influential acoustic cue
for stress perception in Russian. Other cues, such as pitch, intensity, and duration, were also
investigated by Chrabaszcz et al. and found to have much less influence than vowel quality.
This is good news for modelling the auditory input for the network, as it means that including
additional representations for pitch, intensity, and duration is not necessary. However, it also
implies that the acoustic quality of all vowels, rather than only the vowels under
investigation, should be explicitly preserved to account for stress position in the word.

Table 3. Vowel inventory

 stressed syllable unstressed syllable

first syllable [a] [o] [ɐ]

second syllable [a] [ɨ] [ə] [ɪ]̈

Once the properties of the toy language have been established, the next step in creating a
training dataset for the DBM involves defining word representations that provide valuable
input for the network to acquire this toy language. Following the approach taken by Boersma,
Chládková & Benders (2022), the input for the network is divided into auditory and semantic
components. The step-by-step construction of these two components is presented in Sections
3.2.2 and 3.2.3, with examples of the complete input representations showcased in Section
3.2.4. Throughout the rest of this thesis, the term toy language will be used to refer to the
toy language constructed for this thesis. Whenever referring to the toy language from
Boersma, Chládková & Benders (2022), it will be explicitly mentioned.

20

3.2.2 Auditory input representation

The auditory input encoding a word from the toy language should consist of data representing
four sounds: two consonants and two vowels (CVCV), with the second vowel sometimes being
a null sound. This section will discuss the process of designing separate representations for
vowels, consonants, and null sounds. By doing so, it will eventually become possible to
concatenate the four representations into a single auditory input. The discussion begins with
vowels.

The phonetic quality of a vowel is chosen to be represented by the first two formants,
following the approach of Boersma, Chládková & Benders (2022). The values for the first and
second formants are derived from an experiment conducted by Padget & Tabain (2005),
which explored various patterns of Russian vowel reduction. The findings of this experiment
are depicted in Figure 7. The study of Padget & Tabain categorises vowels into stressed,
prestressed, and unstressed categories, which corresponds to stressed vowels, vowels
undergoing moderate reduction, and vowels undergoing extreme reduction, respectively, as
discussed in Section 2.

Figure 7. Vowel spaces (in ERB) of stressed as well as moderately reduced (pre-stressed) and

extremely reduced (unstressed) vowels in Russian (Padget & Tabain 2005)

Considering the importance of accurately representing vowel qualities to account for stress
position in words, the next objective is to determine parameters for normal distributions in
F1-F2 space that result in random realisations of vowels fitting reasonably well within the
ovals and circles depicted in Figure 7. Tokens for each vowel will be drawn from these
distributions. Achieving a fit within circles of different diameters for different vowels requires
selecting specific standard deviations for each vowel’s distribution, while achieving a good
fit within the ovals involves adjusting standard deviations for F1 and F2 separately. Table 4
provides a list of the six vowels possible in the toy language, along with their mean (M) and
standard deviation (SD) values for F1 and F2. The corresponding auditory realisations of the

21

generated vowels, based on these distributions, are illustrated in Figure 8 (for the three
vowels [a], [o], and [ɐ] appearing in the first syllable), Figure 9 (for the four vowels [a], [ɨ],
[ə], and [ɪ]̈ appearing in the second syllable), and Figure 10 (for all six vowels).

Table 4. Six possible vowels

 F1 (ERB) F2 (ERB)

phonetic form M SD M SD

[a] 14.0 0.7 19.0 0.5

[o] 11.0 0.7 16.5 1.0

[ɐ] 13.0 0.6 18.5 1.1

[ɨ] 9.0 0.8 21.5 0.8

[ə] 12.0 0.9 18.5 1.0

[ɪ]̈ 10.0 0.7 20.0 0.4

Figure 8. Auditory realisations of 1500 randomly generated vowels for the first syllable

22

Figure 9. Auditory realisations of 2000 randomly generated vowels for the second syllable

Figure 10. Auditory realisations of 3000 randomly generated vowels for both syllables

23

Following Boersma, Chládková & Benders (2022), the auditory nodes for vowels will
represent the part of the basilar membrane relevant for hearing F1 and F2, covering a spectral
continuum ranging from 4.0 to 28.0 ERB. Figure 11 illustrates the input representations for
all six possible vowels using the following colour code: the red gradient indicates positive
activity, with darker shades of red representing greater activity or stronger activation, while
the blue gradient indicates negative activity, with darker shades of blue representing larger
absolute values of negative activity or stronger inhibition. The activation level of a node for
a vowel varies from -1.0 (most inhibited) to 4.0 (most activated).

[a]

[o]

[ɐ]

[ɨ]

[ə]

[ɪ]̈

Figure 11. Six possible vowel input representations

As seen in Figure 11, the nodes associated with the not-excited regions of the basilar
membrane are inhibited. This is done to ensure that the lack of activation in these nodes
genuinely reflects the absence of sound at the corresponding frequencies, rather than a
potentially present sound that goes unnoticed by the listener. Furthermore, it is important to
consider phonetic variation, as different speakers might pronounce the same vowels with
slight variation (see Figure 7). To address this, when preparing the training dataset for the
model, random samples of both vowels are drawn from the vowel distributions described in
Table 4 for each word. Figure 12 illustrates examples of vowels generated using this approach.

24

[a]

[o]

[ɐ]

[ɨ]

[ə]

[ɪ]̈

Figure 12. Randomly sampled vowel input representations

Moving on to modelling auditory input for consonants, the decision was made to represent
their phonemic forms instead of modelling their specific phonetic qualities. There are two
reasons for this choice. First, it is challenging to find unified phonetic qualities that apply to
different types of consonants, such as plosives, fricatives, and nasals, which are all present in
the toy language. Second, and most importantly, the primary focus of this thesis is on vowels,
and including consonant information into a word representation is only important for
differentiation between word meanings. For this purpose, it seems sufficient to represent
consonants phonemically in the auditory input. The inventory of all possible consonants along
with their input representations is shown in Figure 13, using the same colour code as the one
used for the vowel input representation, with one difference: there is no gradient present here
because phonemic representations are discrete.

25

The activation level of a node for a consonant can be either -1.0 (for inhibited nodes) or 5.5
(for activated nodes). The reason for choosing a higher activation level for consonants
compared to the maximum activation level for vowels (which is 4.0) is that only one node is
activated for a consonant, whereas several nodes are activated for each formant frequency of
a vowel. As a result, setting the maximum activation level of a consonant and a vowel at the
same value resulted in poor consonant learning performance of the model. Through
experimental analysis, it was determined that a value of 5.5 for consonant activation yielded
the most successful training results.

|b|

|v|

|ʐ|

|z|

|j|

|k|

|m|

|r|

|s|

|t|

Figure 13. The ten possible consonant input representations

26

Another representation that needs to be addressed is the representation of a null sound. The
auditory nodes for the null sound are chosen to be inhibited, following the same motivation
as the inhibition of nodes representing the not-excited parts of the basilar membrane for
vowels, as described earlier. Moreover, the inhibition level of the nodes representing the null
sound is slightly higher than the typical inhibition of inactive parts of the basilar membrane,
specifically set as -2.0 instead of -1.0. This value was chosen for input normalisation and
confirmed through experimental analysis by comparing the learning performance of models
trained on sets with different inhibition values. Finally, Figure 14 illustrates examples of full
word representations, combining representations for two consonants and two vowels.

[sɐvˈa]

[bot]

[rɐˈbɨ]

Figure 14. Examples of whole-word auditory input representations

27

3.2.3 Semantic input representation

The semantic input encoding a word from the toy language should include data that
represents the lexical meaning of the word and its morphosyntactic meaning, such as gender
and number. The words from the toy language always have one of ten possible lexical
meanings and one of three possible morphosyntactic meanings. An overview of all the
possible meanings is presented in Table 5.

Table 5. The possible meanings in the toy language

lexical
meanings

morphosyntactic
meanings

<owl>
<rose>
<cat>
<bot>

<mine>
<heat>
<toad>
<basin>
<bar>

<slave>

<F>
<M>
<PL>

Figure 15 illustrates the inventory of all possible composite meanings, along with their
corresponding input representations, using the same colour code as the auditory input
representation. Similar to the input representation of consonants, there is no gradient present
in semantic representations as they are also discrete. The activation level of a semantic node
can be either ─2.0 (for inhibited nodes) or +3.5 (for activated nodes), aligning with the
choice of Boersma, Chládková & Benders (2022). Furthermore, following their approach,
during the evaluation of the model for the production of partial meaning (such as only the
lexical, or only the morphosyntactic part of the full meaning), the activation levels will be
─1.0 for inhibited nodes and +4.5 for activated nodes.

The difference in activation strengths of an active node, which is +3.5 when two nodes are
activated and +4.5 when one node is activated, is chosen for input normalisation.
Furthermore, the variation in inhibition between these two cases can be conceptualised as
different strengths of lateral inhibition on the input level, which also contributes to input
normalisation. When only one semantic node is active, the inactive nodes are supressed to a
lesser extent compared to when two semantic nodes are active. In the former case, the
activation level of inhibited nodes is ─1, whereas in the latter case, it is ─2.

28

<owl.F>
<owl.PL>
<rose.F>

<rose.PL>
<cat.M>
<cat.PL>
<bot.M>
<bot.PL>
<mine.F>

<mine.M>
<mine.PL>

<heat.F>
<heat.M>
<toad.F>

<toad.PL>
<basin.M>
<basin.PL>

<bar.M>
<bar.PL>
<slave.F>

<slave.M>
<slave.PL>

Figure 15. The twenty-two possible semantic input representations

29

3.2.4 Full input representation

Finally, it is possible to combine the auditory and semantic components of the input to
observe examples of the complete input used for training the model. Examples of such
complete input are shown in Figure 16.

[sɐvˈa]
<owl.F>

[kot]
<cat.M>

[ʐˈabɪ]̈
<toad.PL>

Figure 16. Examples of the complete input representations

Figure 17. The neural network, trained on 13200 instances

Figure 18. The neural network, trained on 13200 instances and utilised for comprehension of the word [sɐvˈa]

3.3 Network architecture

An example of a complete neural network, trained on 13200 instances is presented in Figure
17. The input level of this network consists of auditory and semantic components, as
described in Section 3.2, comprising a total of 131 nodes (49 nodes for each of the two vowels,
10 nodes for each of the two consonants, and 13 nodes for meaning). The first and second
hidden levels of the network consist of 50 and 20 nodes respectively, mirroring the
configuration of the network in Boersma, Chládková & Benders (2022). Various alternative
node configurations for the hidden levels were tested but did not result in noticeable
improvements in the network’s learning performance. Figure 18 illustrates the same network
employed for comprehension of one of the words from the toy language, which sounds like
[sɐvˈa] and has the meaning <owl.F>.

3.4 Training algorithm

The procedure for training the network was originally introduced by Boersma (2019) and is
based on an algorithm for training deep Boltzmann machines previously proposed by
Salakhutdinov & Hinton (2009). This training procedure was also employed by Boersma,
Chládková & Benders (2022). The training process consists of four phases: initial settling,
Hebbian learning, dreaming, and anti-Hebbian learning. These phases are repeated for every
instance in the training dataset. In this section, a brief description of all four phases will be
provided. For a deeper understanding of the concepts and details, please refer to the original
papers (Boersma 2019; Boersma, Chládková & Benders 2022). The enumeration of formulas
is maintained in accordance with these papers for convenience.

The computation process involves several key terms: the activities of the nodes, the biases of
the nodes, and the weights of the connections between the nodes. Let us assume that K
represents the number of nodes in the input level (131 in our case), while L and M represent
the numbers of nodes in the second and third hidden levels, respectively (50 and 20 in our
case). Then the activities of the input level nodes will be denoted as 𝑥𝑘(𝑘 = 1. . 𝐾), the
activities of the first hidden level nodes as 𝑦𝑙(𝑙 = 1. . 𝐿), and the activities of the second
hidden level nodes as 𝑧𝑚(𝑚 = 1. . 𝑀). Furthermore, the biases of the input level nodes will
be denoted as 𝑎𝑘(𝑘 = 1. . 𝐾), the biases of the first hidden level nodes as 𝑏𝑙(𝑙 = 1. . 𝐿), and
the biases of the second hidden level nodes as 𝑐𝑚(𝑚 = 1. . 𝑀). Each node 𝑘 in the input level
is connected to each node 𝑙 in the first hidden level, and the weight of this connection is
represented by 𝑢𝑘𝑙. Similarly, each node 𝑙 in the first hidden level is connected to each node
𝑚 in the second hidden level, and the weight of this connection is represented by 𝑣𝑙𝑚.

While the activities of the nodes in all levels play a crucial role in training and will be the
primary focus of analysis when using the trained network, it is important to note that they

32

are not stored as part of the network’s long-term memory. On the other hand, the biases, and
the weights of the connections between the nodes are retained in the network’s long-term
memory. These biases and weights are the parameters that undergo changes in every training
iteration, and they ultimately define the characteristics and behaviour of the trained network.

3.4.1 Initial settling phase

During the initial settling phase, the instance being used for the current training iteration is
applied to the network’s input level. Subsequently, the input is propagated to the first hidden
level and then to the second hidden level, while the input level is kept clamped. This
propagation is governed by the following formulas:

(3.1) 𝑦𝑙 ← 𝜎(𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙 + ∑ 𝑣𝑙𝑚𝑧𝑚
𝑀
𝑚=1

𝐾
𝑘=1)

where 𝜎(𝑥) is the standard logistic function:

(3.2) 𝜎(𝑥) =
1

1+𝑒−𝑥

(3.3) 𝑧𝑚 ← 𝜎(𝑐𝑚 + ∑ 𝑦𝑙𝑣𝑙𝑚
𝐿
𝑙=1)

Steps (3.1) and (3.3) are repeated until the network reaches a near-equilibrium state, meaning
that the activities of the nodes in all levels almost stop changing between the steps. This
process is referred to as mean-field approximation (Boersma 2019). The number of steps was
set to 10 in both papers (Boersma 2019; Boersma, Chládková & Benders 2022) and will be
determined for our network in Section 4.1.

3.4.2 Hebbian learning phase

During the Hebbian learning phase, actual learning takes place as connections between active
nodes are strengthened, and the biases of the active nodes are increased. This process is
described by the following formulas:

(3.4) 𝑎𝑘 ← 𝑎𝑘 + 𝜂𝑥𝑘

(3.5) 𝑏𝑙 ← 𝑏𝑙 + 𝜂𝑦𝑙

(3.6) 𝑐𝑚 ← 𝑐𝑚 + 𝜂𝑧𝑚

(3.7) 𝑢𝑘𝑙 ← 𝑢𝑘𝑙 + 𝜂𝑥𝑘𝑦𝑙

(3.8) 𝑣𝑙𝑚 ← 𝑣𝑙𝑚 + 𝜂𝑦𝑙𝑧𝑚

where 𝜂 is a learning rate of 0.001

33

3.4.3 Dreaming phase

In the dreaming phase, all the short-term memory information currently present in the
network (which is defined by the activities of the nodes at the end of the initial settling phase)
circulates between the levels. This circulation occurs using the weights of the connections
and the biases of the nodes, which are established during the Hebbian learning phase. The
input level is not clamped and participates in this process:

(9) 𝑥𝑘 ← 𝑎𝑘 + ∑ 𝑢𝑘𝑙𝑦𝑙
𝐿
𝑙=1

(10) 𝑧𝑚 ~ ℬ(𝜎(𝑐𝑚 + ∑ 𝑦𝑙𝑣𝑙𝑚))𝐿
𝑙=1

(11) 𝑦𝑙 ~ ℬ(𝜎(𝑐𝑚 + ∑ 𝑥𝑘𝑢𝑘𝑙 + ∑ 𝑣𝑙𝑚𝑧𝑚)𝑀
𝑚=1)𝐾

𝑘=1

where ℬ(𝑥) represents the Bernoulli distribution, which introduces a degree of randomness
into the network’s state. Steps (9) – (11) are repeated until the network reaches a near-
equilibrium state, meaning that the activities of the input nodes and the probability
distributions of the possible states of the hidden nodes (as defined by (10) and (11) before
applying ℬ(𝑥)) are almost not changing between the steps. The number of steps was set to
10 by Boersma, Chládková & Benders (2022). For the network used in this thesis, this number
will be determined in Section 4.1.

3.4.4 Anti-Hebbian learning phase

During the anti-Hebbian phase, the network is unlearning from the state it reached during
the dreaming phase. The connections between active nodes are weakened, and the biases of
the active nodes are decreased:

(3.12) 𝑎𝑘 ← 𝑎𝑘 − 𝜂𝑥𝑘

(3.13) 𝑏𝑙 ← 𝑏𝑙 − 𝜂𝑦𝑙

(3.14) 𝑐𝑚 ← 𝑐𝑚 − 𝜂𝑧𝑚

(3.15) 𝑢𝑘𝑙 ← 𝑢𝑘𝑙 − 𝜂𝑥𝑘𝑦𝑙

(3.16) 𝑣𝑙𝑚 ← 𝑣𝑙𝑚 − 𝜂𝑦𝑙𝑧𝑚

34

3.5 Programming and visualising tools

The model used in this study was implemented in MATLAB (The MathWorks Inc. 2023). The
learning algorithm for the DBM was adapted from the source code used in the original study
by Boersma, Chládková & Benders (2022) in Praat (Boersma & Weenink 2023). The
implementation of a MATLAB class for the DBM functionality can be found in Appendix 3.
Additionally, the implementation of a MATLAB class used for analysing the network and
creating all the tables shown in Section 4 can be found in Appendix 4.

To visualise the training and subsequent usage of the network, a user interface was created
using MATLAB App Designer. This interface provides convenient control over the training
process and allows the user to conduct visual experiments with the trained network, such as
observing its behaviour when dealing with partial input. The source code for this app,
including all the computation scripts, is available at the UvA Phonetic Sciences archive
(https://www.fon.hum.uva.nl/archive). The visualisations presented in Sections 3 and 4, as
well as all the visualisations in the app, were created using Graphviz, an open-source graph
visualisation software (Ellson et al. 2023).

4 Analysis

To ensure the accurate implementation of the algorithm, the first step was to replicate the
results of the original study (Boersma, Chládková & Benders 2022). This involved modelling
the learning of their toy language, as well as computing and visualising the results. It was
verified that the same results were obtained as reported in the original study.

Subsequently, a model was created consisting of a DBM as described in Section 3.3, a training
algorithm as described in Section 3.4, and a training dataset generator, capable of generating
datasets as described in Section 3.2. For the analysis, the network was trained on a dataset
consisted of 2000 samples for each word, resulting in a total dataset size of 44000 samples.
This process was repeated 100 times consecutively to simulate 100 different learners of the
toy language. For each virtual learner, the necessary measurements were conducted and then
averaged across all the learners.

The analysis involves applying specific inputs to the trained network, resulting in different
patterns of node activation at three different levels of the network. These node activation
patterns correspond to the activities of the input level nodes 𝑥𝑘(𝑘 = 1. . 𝐾), the activities of
the first hidden level nodes 𝑦𝑙(𝑙 = 1. . 𝐿), and the activities of the second hidden level nodes
𝑧𝑚(𝑚 = 1. . 𝑀), as defined in Section 3.2. These patterns can be viewed as vectors in a
multidimensional space, with the number of dimensions matching the number of nodes at
each respective level. The term “similarity” between the levels of the network is then used to

35

refer to the cosine similarity between the vectors representing the node activation patterns for
those levels.

Cosine similarity is a measure of similarity between two vectors in a multidimensional space,
determined by the cosine of the angle between them. It is computed by taking the inner
product of the two vectors and dividing it by the product of their Euclidean norm. The
resulting value ranges between 0 (indicating that the vectors are orthogonal, and therefore
not similar) and 1 (indicating maximal similarity). Each analysis section below will specify
the exact levels of the network being compared.

Section 4.1 provides an overview of the verification process for some of the model’s training
parameters. Following that, in Section 4.2, the modelling of comprehension and production
of the words in the toy language is outlined. This is followed by Section 4.3, where the
proficiency of the trained network in the toy language is measured. Sections 4.4, 4.5, and 4.6
will present an analysis of the hidden levels of the network after processing different partial
inputs to examine the potential emergence of categories, referred to as phonological
categories. Furthermore, please note that in the analysis tables, angle brackets (<>) used to
denote a semantic form are omitted to save space.

4.1 Verifying training parameters

There are two phases in the training process where a sequence of steps is repeated until the
network reaches a near-equilibrium state: the initial settling phase and the dreaming phase.
In the model by Boersma, Chládková & Benders (2022), the number of repetitions in both
cases was set to 10. However, considering the larger number of nodes in the input level of
the DBM in this thesis, as well as a slightly more complex toy language, both parameters were
tested to determine if 10 iterations were truly sufficient for the network states to converge. It
was found that, in both cases, a near-equilibrium state is, in fact, reached much earlier,
specifically after just one iteration in the initial settling phase, and after two iterations in the
dreaming phase. Nevertheless, to stay on the safe side, the number 10 was preserved for both
phases.

4.2 Modelling comprehension and production of words in the toy language

Once the network is trained, it is possible to model comprehension and production of words
in the toy language. Boersma, Chládková & Benders (2022) have provided a detailed
procedure for this evaluation, which involves applying partial input to the network.
Specifically, auditory input is used for comprehension evaluation, while semantic input is

36

used for production evaluation. This partial input is initially spread to the first hidden level
using the step (3.1). Subsequently, a sequence of 10 echoes is performed without clamping
the input level. Each echo consists of steps (3.3), (3.9), (3.1). Boersma, Chládková & Benders
(2022) suggest using 10 echoes as it has been found to be sufficient for the network in their
study to reach a near-equilibrium state. As a result of this echoing process, the input level
transforms into output level, revealing how the network interpreted the provided partial
input. For example, when the network receives auditory input, the semantic part of the output
reflects how the network comprehended the given sound. Conversely, if semantic input is
provided, the auditory part of the output demonstrates how the network produced the given
meaning.

In this thesis, the same echoing method is employed for modelling comprehension and
production, with two adjustments. First, the number of echoes is increased from 10 to 30.
This adjustment is necessary since the network in this thesis does not always reach a near-
equilibrium state after 10 echoes and may require up to 25 echoes. To determine if the
network has reached a near-equilibrium state, cosine similarities are computed between two
consecutive echoes at each of the three levels of the network. If these cosine similarities for
all three levels approach 1.000000 (accurate to six decimal places), then the network is
considered to have reached a near-equilibrium state.

The second adjustment involves clamping the semantic part of the input during echoing in
production. This decision is motivated by the observed better production performance of the
network when the semantic input is clamped5. The question arises: How can this improved
performance be explained? In the context of comprehension, Boersma, Chládková & Benders
(2022, p.28) suggested that the unclamped version may reflect a more realistic scenario
compared to the clamped version. In comprehension, if the auditory output does not match
the input, it can be interpreted as what the network “thinks” it has heard. This behaviour of
the network also supports the existence of the perceptual magnet effect (Kuhl 1991).

However, I suggest that production may inherently differ from comprehension in terms of
their potential to deviate from the input. In comprehension, the listener hears the sound once
before entering the process of deriving a semantic representation for that sound. During this
process, the internal representation of the heard sound might wander off from the original
one. In contrast, in production, the meaning is not heard from the outside world but is created

5 Tables A1.3 and A1.4 in Appendix 1 present the measurements of proficiency in production, as further
explained in Section 4.3. Table A1.3 corresponds to the measurements with the semantic nodes
unclamped, while Table A1.4 corresponds to the measurements with the semantic nodes clamped.

37

in the speaker’s brain. Therefore, the brain might be capable of maintaining the intended
meaning during the process of finding an auditory representation to articulate it. Considering
this interpretation and the better performance of the network in production with the semantic
input nodes being clamped, this method will be further employed for the analysis of
production.

4.3 Proficiency of the network in the toy language

To simulate comprehension, the trained network is provided with input where only the
auditory nodes are activated, while the semantic nodes’ activation is set to 0. An example of
such input for the word <owl.F>[sɐvˈa] is demonstrated in Figure 19(a).

(a) Input level for [sɐvˈa] used for measuring comprehension performance

(b) Comprehension output level for [sɐvˈa]

(c) Standard representation for <owl.F>[sɐvˈa]

Figure 19. Example of input, output, and standard representations for [sɐvˈa] for measuring the
network’s comprehension performance

38

Subsequently, this input is propagated through the network in a series of 30 echoes following
the procedure described in Section 4.2, while keeping the whole input level unclamped. As a
result, the input level becomes the output level, representing how the network comprehended
the given auditory input. An example of such an output level for the word <owl.F>[sɐvˈa],
comprehended by the network trained on 44000 samples, is depicted in Figure 19(b).

Afterwards, the entire comprehension output, as shown in Figure 19(b), is compared with the
entire standard input representation of the intended word, as illustrated in Figure 19(c) for
the word <owl.F>[sɐvˈa]. This comparison involves computing the cosine similarity
between them. Table 6 displays the cosine similarities in percents between the outputs for all
possible auditory inputs (in rows) and the entire input representations of all possible words
in the toy language (in columns), averaged across 100 toy language learners. The table utilises
a gradient of green to encode higher similarities with darker green and lower similarities with
lighter green.

In a similar manner to simulating comprehension, when simulating production, the trained
network is provided with partial input. However, this time only the semantic nodes are
activated, and the auditory nodes’ activation is set to 0. Figure 20(a) demonstrates an example
of such input for the word <owl.F>[sɐvˈa]. After propagating this input through the network
in a series of 30 echoes, the input level becomes the output level, representing how the
network produced the given meaning. Figure 20(b) shows an example of such an output level
for the word <owl.F>[sɐvˈa], produced by the network trained on 44000 samples.

Similar to measuring comprehension proficiency, the cosine similarity is then computed
between the entire production output, as shown in Figure 20(b), and the entire standard input
representation of the word, as shown in Figure 20(c) for the word <owl.F> [sɐvˈa]. Table 7
presents the cosine similarities in percents between the outputs of all possible semantic inputs
(in rows) and the entire standard input representations of all possible words in the toy
language (in columns), averaged across 100 toy language learners. The table utilises a
gradient of red to encode higher similarities with darker red and lower similarities with
lighter red.

Tables 6 and 7 visually demonstrate that the network has successfully learned how to
comprehend and produce words in the toy language. The diagonals of these tables are
highlighted with darker colours, indicating higher similarities. These diagonal similarities in
Tables 6 and 7 can also be referred to as the accuracies of word comprehension (Table 6) and
the accuracies of word production (Table 7).

39

(a) Input level for <owl.F> used for measuring production performance

(b) Production output level for <owl.F>

(c) Standard representation for <owl.F>[sɐvˈa]

Figure 20. Example of input, output, and standard representations for <owl>[sɐvˈa] for measuring
the network’s production performance

To facilitate visual analysis, the standard deviations of the similarities have been omitted
from Tables 6 and 7. Nevertheless, it is worth noting that the average standard deviation of
word comprehension accuracies over 100 learners is 3.68% and the average standard
deviation of words production accuracies over 100 learners is 7.59%. These standard
deviations provide insight into the variability of comprehension and production performance
across the learners. For the specific standard deviations of each similarity across 100 learners,
please refer to Appendix 1, where Tables A1.1 and A1.4 represent the same tables as Table 6
and Table 7 but with the standard deviations included.

Table 6. Comprehension proficiency: cosine similarities between the entire comprehension outputs for all possible standard auditory inputs (in rows) and
the entire standard input representations of all possible words (in columns); averaged over 100 toy language learners (in percents). Colour-coding: gradient

of green, with darker green indicating higher similarities. The network is trained on 44000 samples.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

[sɐvˈa] 96 38 20 6 8 23 9 6 63 8 22 64 26 39 25 26 23 26 26 64 26 23
[sˈovɪ]̈ 37 95 30 64 33 17 33 63 5 33 17 6 5 -3 31 4 16 5 31 5 4 17
[rˈozə] 20 32 95 65 33 -7 33 32 20 33 -7 20 3 29 -1 14 6 3 -2 33 15 6
[rˈozɪ]̈ 3 62 63 95 32 14 32 62 3 33 15 3 2 -2 29 14 27 2 28 16 14 27
[kot] 7 30 31 30 98 36 83 42 7 73 7 7 48 4 3 48 7 48 3 7 48 7

[kɐtˈɨ] 24 17 -5 18 40 94 22 30 24 11 61 25 28 14 37 28 61 28 37 25 28 62
[bot] 6 32 32 32 83 17 98 60 6 73 6 6 47 3 3 47 5 57 14 6 47 6

[bˈotɪ]̈ 4 61 30 61 47 29 64 93 5 36 16 5 8 -2 29 7 16 19 42 5 8 16
[mɐjˈa] 63 5 19 5 8 24 8 5 96 37 57 63 25 39 24 24 23 25 24 63 25 24

[moj] 7 30 31 30 72 7 73 31 36 98 36 7 48 3 3 48 7 48 3 7 48 7
[mɐjˈɨ] 24 18 -6 18 9 62 8 17 58 38 95 24 26 14 38 26 62 26 38 24 27 62
[ʐɐˈra] 63 6 19 6 9 24 9 6 63 9 24 96 56 52 39 27 24 38 39 63 27 24

[ʐar] 26 4 3 3 48 26 48 3 26 48 26 54 99 44 44 74 26 84 44 26 74 25
[ʐˈabə] 41 -2 28 -1 4 16 4 -1 41 4 16 54 46 96 66 34 15 35 33 54 46 29
[ʐˈabɪ]̈ 24 29 0 30 5 36 5 30 24 4 35 38 46 65 95 34 36 34 63 38 45 49

[taz] 25 3 14 14 48 26 48 3 25 48 26 25 73 32 32 99 55 74 32 25 73 26
[tɐzˈɨ] 24 17 7 30 10 62 10 18 25 10 62 25 28 15 39 57 95 28 39 25 28 62
[bar] 25 4 4 4 48 25 58 15 25 48 24 37 84 34 33 74 25 99 61 25 74 25

[bˈarɪ]̈ 27 30 -1 30 6 38 18 43 27 7 38 39 47 32 64 36 38 64 96 26 35 37
[rɐˈba] 63 4 32 17 7 24 7 4 63 7 24 63 25 52 38 25 24 25 25 96 55 57

[rab] 24 3 14 14 48 25 47 3 25 48 25 24 73 43 42 73 25 73 31 54 99 54
[rɐˈbɨ] 24 17 6 29 9 62 9 17 24 9 62 24 28 27 51 28 62 28 38 58 57 95

41

Table 7. Production proficiency: cosine similarities between the entire production outputs for all possible semantic inputs (in rows) and the entire standard
input representations of all possible words (in columns); averaged over 100 toy language learners (in percents). Colour-coding: gradient of red, with darker

red indicating higher similarities. The network is trained on 44000 samples; semantic nodes of the input are clamped.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

owl.F 76 47 37 12 18 8 18 12 41 18 8 41 19 38 13 19 8 19 13 41 19 8
owl.PL 45 78 13 43 21 34 21 43 10 21 34 10 19 11 41 20 34 19 42 10 19 33
rose.F 27 18 81 52 24 3 24 19 28 24 2 28 16 37 8 25 13 16 10 39 25 13

rose.PL 3 47 52 81 23 28 24 49 4 23 28 5 16 9 38 23 38 16 40 15 24 39
cat.M 14 19 20 20 89 44 72 30 14 63 15 15 60 15 15 59 14 59 15 14 59 15
cat.PL 11 37 11 38 49 75 29 48 10 19 40 11 21 12 39 21 41 21 38 12 22 42
bot.M 11 24 26 26 75 19 91 53 11 67 10 11 54 12 13 56 11 62 20 13 56 12
bot.PL 8 47 19 48 34 41 54 80 8 25 31 7 15 10 39 17 33 25 47 10 17 33
mine.F 40 9 35 9 18 9 18 9 75 49 44 39 19 37 11 19 9 19 10 40 20 10

mine.M 13 20 20 20 63 13 64 20 43 90 43 13 59 14 15 59 13 59 15 13 59 13
mine.PL 10 39 11 39 19 38 20 39 45 50 73 9 20 12 41 21 38 21 40 10 21 38

heat.F 43 9 35 12 20 13 20 9 43 19 12 76 49 44 21 20 13 30 20 44 21 13
heat.M 18 16 18 18 61 19 60 17 19 60 18 47 85 26 27 61 19 69 27 20 61 19
toad.F 32 11 38 10 16 6 16 11 33 17 7 42 32 80 52 24 6 21 17 41 32 15
toad.P 9 41 12 40 16 31 16 40 9 17 32 18 31 52 79 24 32 21 45 18 31 41

basin.M 20 13 22 23 56 21 57 13 20 56 21 20 65 22 22 91 50 65 22 20 65 20
basin.PL 16 30 15 41 14 45 15 30 16 14 45 15 27 17 44 57 79 27 44 15 27 45

bar.M 19 10 11 11 54 19 62 20 21 55 20 29 75 25 25 67 19 92 53 21 69 21
bar.PL 15 33 6 35 11 38 21 43 16 13 40 25 37 21 50 28 38 56 83 17 30 41
slave.F 44 4 41 16 15 14 15 4 44 15 14 44 23 50 25 22 13 23 13 78 53 48

slave.M 19 14 23 23 58 19 58 15 19 58 19 19 63 29 29 62 18 63 20 48 88 48
slave.PL 15 32 17 43 17 43 18 33 15 17 43 14 24 24 51 23 42 25 41 49 54 76

4.4 Phonological categories in comprehension and production

Now that it has been established that the network has successfully learned to comprehend
and produce words in the toy language, the next step of the analysis becomes relevant.
Specifically, it is now interesting to compare the hidden representations of all the words in
the toy language. These hidden representations can be found in the hidden levels of the
network following the comprehension and production of each word and are viewed as
phonological representations of these words. Therefore, comparing the hidden
representations of different words can potentially lead to the discovery of phonological
categories.

In their study, Boersma, Chládková & Benders (2022) focused on investigating the first hidden
level of their network for this comparison. They justified this choice by noting that the second
level showed minimal variation across different utterances. Therefore, to determine the
phonological similarities between two utterances in their toy language, they computed the
cosine similarities between these utterances’ corresponding first hidden levels.

In this thesis, the same method for comparing hidden representations is employed, with one
difference: instead of comparing only the first hidden level of the network, the entire
network’s hidden state, including both hidden levels, will be compared. To implement this,
two vectors representing the first and second hidden levels will be concatenated for each
word to compute the cosine similarities between them. This approach allows for a more
comprehensive analysis, as it includes any potential influence on categorisation, no matter
how small, that may occur at the second hidden level. The fact that cosine similarity reflects
a comparison of the individual vector dimensions ensures the validity of comparing two
concatenated vectors in a single operation.

The decision to include the second hidden level in the analysis was driven by two main
reasons. Firstly, in the network used in this thesis, the second hidden level exhibited a greater
variation (ranging from 97% to 100% with standard deviations of 0% and 1% across 100
language learners) compared to the network used by Boersma, Chládková & Benders (2022)
(ranging from 98% to 100% with standard deviation of 0% and 1% across 100 language
learners). This broader range of similarities suggests a potentially stronger influence of the
second hidden level on the categorisation process. Secondly, and more importantly, upon
examining the similarity tables for the first hidden level alone and for both levels together, it
became evident that including the second hidden level resulted in clearer categorisation, or
rather, multiple categorisations. The fact that multiple categorisations emerged in the hidden
states of the network is explained below.

Throughout the rest of this thesis, the term “hidden states of the network after applying input
X” will be used to refer to the activation pattern of both hidden levels of the network following

43

the application of a specific input X. Furthermore, the terms “hidden representation of input
X”, and “phonological representation of input X” will be used interchangeably to describe the
hidden states of the network after applying input X. Consequently, the term “phonological
similarity between inputs A and B” will denote the cosine similarity between the distinct
hidden states of the network, one obtained after applying input A and the other after applying
input B.

The first step in examining the hidden levels of the network is to measure the phonological
similarities between different auditory inputs in comprehension and different semantic inputs
in production. Figure 21 provides examples of the input levels given to the network for
subsequent comprehension (21(a)) and production (21(b)). After such inputs are provided for
each word in the toy language, the network’s hidden states are compared with each other
separately for comprehension and production.

(a) Input level for [sɐvˈa] used for analysing the network’s hidden states in comprehension

(b) Input level for <owl.F> used for analysing the network’s hidden states in production

Figure 21. Example of input levels for <owl>[sɐvˈa] for analysing the network’s hidden states
 in comprehension(a) and production(b)

Table 8 displays the phonological similarities between standard auditory representations of
all possible words in the toy language, averaged over 100 language learners. A gradient of
green is applied to all cells containing similarities higher than 60%, with darker green
representing stronger similarities. It can be observed that the similarities in Table 8 are
stronger between words that share the same set of vowel sounds. For example, [sɐvˈa] shares
the set of vowel sounds with [mɐjˈa], [ʐɐˈra], and [rɐˈba]. Similarly, [sˈovɪ]̈ shares the set of

44

vowel sounds with [rˈozɪ]̈ and [bˈotɪ]̈, etc. Additionally, pairs that share one vowel and both
consonants are marked high on the similarity scale, such as the pairs [rˈozə]−[rˈozɪ]̈,
[bot]−[bˈotɪ]̈, [ʐˈabə]−[ʐˈabɪ]̈, [bar]−[bˈarɪ]̈, [rɐˈba]−[rɐˈbɨ].

In the same manner as Table 8, Table 9 displays the phonological similarities between all
possible word meanings in the toy language, averaged across 100 language learners. A
gradient of red is applied to all cells containing similarities higher than 60%, with darker red
representing stronger similarities. Categorisation in this table appears different compared to
comprehension categorisation seen in Table 8: the similarities are stronger here between
words that share the same meaning, either in terms of its lexical or morphosyntactic aspect.
For example, <owl.F> shares the lexical meaning with <owl.PL> and the morphosyntactic
meaning with <rose.F>, <mine.F>, <heat.F>, <toad.F>, and <slave.F>. Similarly,
<owl.PL> shares the lexical meaning with <owl.F> and the morphosyntactic meaning with
<rose.PL>, <cat.PL>, <bot.PL>, <mine.PL>, <toad.PL>, <basin.PL>, <bat.PL>,
and <slave.PL>, etc.

Table 8. Phonological similarities between all possible words in comprehension, averaged over 100 toy language learners (in percents). Colour-coding:
gradient of green for values above 60, with darker green indicating higher similarities. The network is trained on 44000 samples.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

owl.F [sɐvˈa] 100 69 60 56 51 63 52 55 82 52 65 81 60 68 62 59 64 59 64 81 59 64
owl.PL [sˈovɪ]̈ 69 100 69 81 65 57 66 81 55 65 58 56 49 51 62 49 57 49 63 55 49 57
rose.F [rˈozə] 60 69 100 85 65 50 65 68 59 65 50 59 48 64 51 54 55 48 50 65 54 56

rose.PL [rˈozɪ]̈ 56 81 85 100 64 56 65 80 54 65 57 54 46 50 62 53 62 47 61 60 53 62
cat.M [kot] 51 65 65 64 100 65 90 72 51 86 51 51 69 49 49 70 52 69 49 51 70 52

cat.PL [kɐtˈɨ] 63 57 50 56 65 100 57 62 65 53 82 64 59 59 65 60 81 59 65 64 60 81
bot.M [bot] 52 66 65 65 90 57 100 80 51 86 52 51 69 49 49 69 52 75 54 51 69 52

bot.PL [bˈotɪ]̈ 55 81 68 80 72 62 80 100 55 67 58 55 49 50 62 49 58 54 68 54 49 57
mine.F [mɐjˈa] 82 55 59 54 51 65 51 55 100 65 79 82 58 67 62 58 64 57 63 82 58 64
mine.M [moj] 52 65 65 65 86 53 86 67 65 100 65 52 70 49 48 70 52 70 49 51 70 52

mine.PL [mɐjˈɨ] 65 58 50 57 51 82 52 58 79 65 100 64 59 59 65 59 82 58 66 64 59 82
heat.F [ʐɐˈra] 81 56 59 54 51 64 51 55 82 52 64 100 72 73 68 59 65 64 68 82 58 64
heat.M [ʐar] 60 49 48 46 69 59 69 49 58 70 59 72 100 71 70 86 59 91 70 58 85 59

toad.F [ʐˈabə] 68 51 64 50 49 59 49 50 67 49 59 73 71 100 84 65 59 66 68 73 71 65
toad.PL [ʐˈabɪ]̈ 62 62 51 62 49 65 49 62 62 48 65 68 70 84 100 64 65 65 80 68 70 71

basin.M [taz] 59 49 54 53 70 60 69 49 58 70 59 59 86 65 64 100 73 86 65 59 86 60
basin.PL [tɐzˈɨ] 64 57 55 62 52 81 52 58 64 52 82 65 59 59 65 73 100 59 66 65 60 82

bar.M [bar] 59 49 48 47 69 59 75 54 57 70 58 64 91 66 65 86 59 100 79 58 85 59
bar.PL [bˈarɪ]̈ 64 63 50 61 49 65 54 68 63 49 66 68 70 68 80 65 66 79 100 62 64 65

slave.F [rɐˈba] 81 55 65 60 51 64 51 54 82 51 64 82 58 73 68 59 65 58 62 100 72 79
slave.M [rab] 59 49 54 53 70 60 69 49 58 70 59 58 85 71 70 86 60 85 64 72 100 74

slave.PL [rɐˈbɨ] 64 57 56 62 52 81 52 57 64 52 82 64 59 65 71 60 82 59 65 79 74 100

46

Table 9. Phonological similarities between all possible words in production, averaged over 100 toy language learners (in percents). Colour-coding: gradient
of red for values above 60, with darker red indicating higher similarities. The network is trained on 44000 samples.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

owl.F [sɐvˈa] 100 79 71 60 58 60 57 60 74 59 60 73 58 72 60 59 61 58 59 74 59 61
owl.PL [sˈovɪ]̈ 79 100 61 72 59 72 58 72 60 60 73 59 57 61 72 59 71 58 71 60 58 71
rose.F [rˈozə] 71 61 100 82 60 61 60 63 71 60 61 70 58 71 60 60 62 57 60 73 61 63

rose.PL [rˈozɪ]̈ 60 72 82 100 59 72 59 73 59 58 71 60 57 59 70 59 71 57 71 62 59 72
cat.M [kot] 58 59 60 59 100 74 83 62 58 81 59 59 80 58 58 79 58 78 57 58 79 59

cat.PL [kɐtˈɨ] 60 72 61 72 74 100 60 75 61 59 75 60 58 60 70 59 74 58 71 61 59 74
bot.M [bot] 57 58 60 59 83 60 100 75 57 81 58 58 78 58 58 78 57 79 58 57 79 59

bot.PL [bˈotɪ]̈ 60 72 63 73 62 75 75 100 61 60 74 59 57 61 72 58 72 59 72 60 58 72
mine.F [mɐjˈa] 74 60 71 59 58 61 57 61 100 73 78 73 58 72 60 59 61 58 60 75 59 62
mine.M [moj] 59 60 60 58 81 59 81 60 73 100 75 58 79 59 59 80 58 79 58 58 80 60

mine.PL [mɐjˈɨ] 60 73 61 71 59 75 58 74 78 75 100 58 57 61 72 59 73 58 72 60 58 74
heat.F [ʐɐˈra] 73 59 70 60 59 60 58 59 73 58 58 100 75 72 60 59 60 60 60 74 60 61
heat.M [ʐar] 58 57 58 57 80 58 78 57 58 79 57 75 100 61 59 80 58 81 59 58 80 59

toad.F [ʐˈabə] 72 61 71 59 58 60 58 61 72 59 61 72 61 100 82 60 61 58 60 73 61 63
toad.PL [ʐˈabɪ]̈ 60 72 60 70 58 70 58 72 60 59 72 60 59 82 100 59 72 58 71 62 61 73

basin.M [taz] 59 59 60 59 79 59 78 58 59 80 59 59 80 60 59 100 75 80 59 59 80 60
basin.PL [tɐzˈɨ] 61 71 62 71 58 74 57 72 61 58 73 60 58 61 72 75 100 59 72 62 59 75

bar.M [bar] 58 58 57 57 78 58 79 59 58 79 58 60 81 58 58 80 59 100 76 60 81 61
bar.PL [bˈarɪ]̈ 59 71 60 71 57 71 58 72 60 58 72 60 59 60 71 59 72 76 100 60 59 73

slave.F [rɐˈba] 74 60 73 62 58 61 57 60 75 58 60 74 58 73 62 59 62 60 60 100 74 80
slave.M [rab] 59 58 61 59 79 59 79 58 59 80 58 60 80 61 61 80 59 81 59 74 100 75

slave.PL [rɐˈbɨ] 61 71 63 72 59 74 59 72 62 60 74 61 59 63 73 60 75 61 73 80 75 100

An attentive reader might notice that the set of darker green cells in Table 8 could be a subset
of the set of darker red cells in Table 9. This can be confirmed by examining Tables 10 and
11, which represent the excerpts from Tables 8 and 9, specifically displaying phonological
similarities between words with the same morphosyntactic meaning <F>. In production, all
such words fall into one group, exhibiting phonological similarity ranging from 70% to 75%,
as shown in Table 11. Consequently, the similarities between all pairs are marked with very
close shades of red in this table. On the other hand, Table 10 reveals clear categorisation
within the same subgroup of words: words with the phonetic forms [sɐvˈa], [mɐjˈa], [ʐɐˈra],
and [rɐˈba] are highly similar to each other (with similarities of 81%-82%), while words with
the phonetic forms [rˈozə] and [ʐˈabə] form their own categories, being less similar to any
other word.

Table 10. Phonological similarities between the six words sharing morphosyntactic meaning <F>
in comprehension, averaged over 100 toy language learners (in percents). Colour-coding: gradient
of green for values above 60, with darker green indicating higher similarities. The network is trained

on 44000 samples.

Table 11. Phonological similarities between the six words sharing morphosyntactic meaning <F>
in production, averaged over 100 toy language learners (in percents). Colour-coding: gradient of red
for values above 60, with darker red indicating higher similarities. The network is trained on 44000

samples.

owl.F

[sɐvˈa]
rose.F
[rˈozə]

mine.F
[mɐjˈa]

heat.F
[ʐɐˈra]

toad.F
[ʐˈabə]

slave.F
[rɐˈba]

owl.F [sɐvˈa] 100 60 82 81 68 81
rose.F [rˈozə] 60 100 59 59 64 65

mine.F [mɐjˈa] 82 59 100 82 67 82
heat.F [ʐɐˈra] 81 59 82 100 73 82
toad.F [ʐˈabə] 68 64 67 73 100 73
slave.F [rɐˈba] 81 65 82 82 73 100

owl.F

[sɐvˈa]
rose.F
[rˈozə]

mine.F
[mɐjˈa]

heat.F
[ʐɐˈra]

toad.F
[ʐˈabə]

slave.F
[rɐˈba]

owl.F [sɐvˈa] 100 71 74 73 72 74
rose.F [rˈozə] 71 100 71 70 71 73

mine.F [mɐjˈa] 74 71 100 73 72 75
heat.F [ʐɐˈra] 73 70 73 100 72 74
toad.F [ʐˈabə] 72 71 72 72 100 73
slave.F [rɐˈba] 74 73 75 74 73 100

48

An even clearer example that visually illustrates the emergence of different phonological
categorisations in comprehension and production can be seen in Tables 12 and 13. These
tables are excerpts from Tables 8 and 9, respectively, and specifically represent phonological
similarities between words with the same morphosyntactic meaning <M>. Table 13
demonstrates how all the words in this selection fall into one group. In Table 12, it can be
observed that one production category from Table 13 is split into exactly two comprehension
categories, based on the quality of the vowel. The first comprehension category includes the
words [kot], [bot], and [moj], while the second comprehension category consists of the words
[ʐar], [taz], [bar], and [rab].

Table 12. Phonological similarities between the seven words sharing morphosyntactic meaning
<M> in comprehension, averaged over 100 toy language learners (in percents). Colour-coding:

gradient of green for values above 60, with darker green indicating higher similarities. The network
is trained on 44000 samples.

Table 13. Phonological similarities between the seven words sharing morphosyntactic meaning
<M> in production, averaged over 100 toy language learners (in percents). Colour-coding:

gradient of red for values above 60, with darker red indicating higher similarities. The network is
trained on 44000 samples.

cat.M
[kot]

bot.M
[bot]

mine.M
[moj]

heat.M
[ʐar]

basin.M
[taz]

bar.M
[bar]

slave.M
[rab]

cat.M [kot] 100 90 86 69 70 69 70
bot.M [bot] 90 100 86 69 69 75 69

mine.M [moj] 86 86 100 70 70 70 70
heat.M [ʐar] 69 69 70 100 86 91 85

basin.M [taz] 70 69 70 86 100 86 86
bar.M [bar] 69 75 70 91 86 100 85

slave.M [rab] 70 69 70 85 86 85 100

cat.M
[kot]

bot.M
[bot]

mine.M
[moj]

heat.M
[ʐar]

basin.M
[taz]

bar.M
[bar]

slave.M
[rab]

cat.M [kot] 100 83 81 80 79 78 79
bot.M [bot] 83 100 81 78 78 79 79

mine.M [moj] 81 81 100 79 80 79 80
heat.M [ʐar] 80 78 79 100 80 81 80

basin.M [taz] 79 78 80 80 100 80 80
bar.M [bar] 78 79 79 81 80 100 81

slave.M [rab] 79 79 80 80 80 81 100

49

Another way to observe the difference in phonological categorisations between
comprehension and production is by examining the phonological representations of words in
both processes, placing them side by side for each word. Table 14 provides an example of
such an analysis for two words: <owl.F>[sɐvˈa] and <owl.PL>[sˈovɪ]̈. For both words, the
colour coding suggests some similar categories in comprehension and production. However,
zooming into these categories, it is possible to see that sometimes the production similarities
are higher than the comprehension similarities, and vice versa. For example, the
comprehension similarities between [sɐvˈa] and three other words with the same vowel
qualities ([mɐjˈa], [ʐɐˈra], and [rɐˈba]) are higher (82%, 81%, and 81%, respectively) than
the corresponding production similarities (74%, 73%, and 74%, respectively). At the same
time, the production similarity between <owl.F> and <owl.PL> is higher (79%) than the
corresponding comprehension similarity (69%).

The discovery of two different phonological categorisations of entire words in comprehension
and production indicates that each word in the toy language has two distinct phonological
representations: one in comprehension and one in production. This raises the question of how
these two phonological representations compare to each other. To address this question, Table
15 provides such a comparison for two types of virtual language learners: those who learned
the language using a training dataset of 44000 samples (row 1) and those who trained on
88000 samples (row 2). Each column in Table 15 represents the similarity between
phonological representations in comprehension and production for one word. The inclusion
of more experienced learners in the analysis aims to demonstrate that the observed
categorisation in the first row of Table 15 becomes even more pronounced as learners are
exposed to more training data.

Table 15 illustrates that the highest similarities between two phonological representations of
a word are observed for <cat.M>[kot], <bot.M>[bot], <mine.M>[moj],
<heat.M>[ʐar], <basin.M>[taz], <bar.M>[bar], and <slave.M>[rab]. These words
share the morphosyntactic meaning <M>, which is the only meaning among all lexical and
morphosyntactic meanings which does not have variation in its phonetic realisations, always
being realised as [∅]. Moreover, with more training, similarity between the two phonological
representations for these words remains high compared to all the other words, where it
decreases.

Table 14. Phonological similarities between <owl.F>[sɐvˈa], <owl.PL>[sˈovɪ]̈ and all possible words in the toy language, averaged over 100 language
learners (in percents). Colour-coding: gradient of green for values above 60 in comprehension, gradient of red for values above 60 in production, with

darker red and darker green indicating higher similarities. The network is trained on 44000 samples.

(a) Phonological similarities between [sɐvˈa] and all possible words in comprehension and between <owl.F> and all possible words in production

(a) Phonological similarities between [sˈovɪ]̈ and all possible words in comprehension and between <owl.PL> and all possible words in production

Table 15. Similarities between phonological representations of the same words in comprehension and production; means and standard deviations averaged
over 100 language learners (in percents). Colour-coding: gradient of blue, with darker blue indicating higher similarities The network is trained on 44000

samples (1st row) and on 88000 samples (2nd row).

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

[sɐvˈa] 100 69 60 56 51 63 52 55 82 52 65 81 60 68 62 59 64 59 64 81 59 64
owl.F 100 79 71 60 58 60 57 60 74 59 60 73 58 72 60 59 61 58 59 74 59 61

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

[sˈovɪ]̈ 69 100 69 81 65 57 66 81 55 65 58 56 49 51 62 49 57 49 63 55 49 57
owl.PL 79 100 61 72 59 72 58 72 60 60 73 59 57 61 72 59 71 58 71 60 58 71

owl.F
[sɐvˈa]

owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

network
trained on

44000 samples
83 83 87 86 91 82 93 83 83 92 83 83 89 86 84 93 85 93 86 85 91 85

network
trained on

88000 samples
79 80 82 79 90 76 91 77 77 91 78 77 86 80 78 91 79 89 79 79 88 79

4.5 Phonological category of [ɐ] in comprehension

Now that the question regarding the phonological categories for entire words in
comprehension and production has been addressed, it is time to specifically examine the
sound [ɐ] and to determine if it forms a distinct category in the hidden representation of the
network. From the perspective of comprehension, this can be achieved by comparing the
hidden states of the network after processing inputs consisting of only one vowel, namely [a],
[o], or [ɐ], in the first syllable, as illustrated in Figure 22. To indicate a partial auditory input,
symbol “−” is used to represent input components with activities set to 0.

(a) Input level for [−a−−]

(b) Input level for [−o−−]

(c) Input level for [−ɐ−−]

Figure 22. Input levels for [−a−−], [−o−−], and [−ɐ−−]

Table 16 presents the phonological similarities between the inputs [−a−−], [−o−−], and
[−ɐ−−]. It can be observed that the phonological representations of [−ɐ−−] and
[−a−−] are much more similar than those of [−ɐ−−] and [−o−−]. However, an 83%
similarity between [−ɐ−−] and [−a−−] does not necessarily imply that they belong to

52

the same phonological category, especially considering the relatively high similarity of 62%
between [−ɐ−−] and [−o−−]. In other words, the difference between [ɐ] and [a] is only
approximately twice as small as the difference between [ɐ] and [o], given that the concept of
difference is the inverse of similarity. Considering this, it is possible that, from a
comprehension perspective, [ɐ] indeed forms its own category. Moreover, this category is
phonologically more similar to the category formed by [a] then the one formed by [o].

Table 16. Phonological similarities between [−a−−], [−o−−], and [−ɐ−−]
in comprehension, averaged over 100 toy language learners (in percents); means and standard

deviations averaged over 100 toy language learners (in percents).
The network is trained on 44000 samples.

4.6 Phonological category of [ɐ] in production

Section 4.4 provides evidence for the emergence of a distinct phonological category for [ɐ]
in comprehension. However, the categorisation of [ɐ] in production might differ from that in
comprehension, since different phonological categories emerge in comprehension and
production, as shown in Section 4.3. How can we approach determining a possible category
for [ɐ] in production? This question is seemingly less straightforward than a similar question
in comprehension because the input for production consists of different meanings rather than
different sounds. Finding phonological similarities between different meanings cannot
provide much insight into sound categorisations, especially when each meaning has several
phonetic realisations in the language.

However, upon further consideration, answering this question is easier than it initially
seemed. The key to answering it is to remember that the hidden states of the network, after
producing the same meanings, are always the same because the steps (3.3), (3.9), and (3.1),
which are repeated 30 times in a production process, are deterministic. Therefore, each
meaning in the toy language will have its own unique phonological representation in
production. On the one hand, when we examine the lexical and morphosyntactic components
of the meanings separately, we can observe that almost all of them can be phonetically
realised in two different ways, except for the morphosyntactic meaning <M> (which can

 [-a--] [-o--] [-ɐ--]
[-a--] 100 (0) 62 (9) 83 (8)
[-o--] 62 (9) 100 (0) 62 (10)
[-ɐ--] 83 (8) 62 (10) 100 (0)

53

only be realised as [∅]). But on the other hand, in production, none of them can have two
different phonological representations.

Let us take the lexical pair <owl.F>[sɐvˈa]−<owl.PL>[sˈovɪ]̈ as an example. The lexical
meaning <owl> can be phonetically realised in two ways: [sɐv] and [sov]. However, in
production, there is only one possible phonological representation of <owl> because there
is only one possible hidden state of the network after the meaning <owl> has been
produced. Therefore, the question of whether there is a separate phonological category for
[ɐ] in production can be answered directly, without analysing any hidden representations:
no, there is not.

However, another question that arises is: is the phonological representation of <owl> in
production closer to the phonological representation of [sɐv] or that of [sov] in
comprehension? Answering this question will help determine which of the two possible
phonetic realisations of <owl>, [sɐv] or [sov], is phonologically more similar to the lexical
meaning <owl>.

I will attempt to answer this question for six lexical pairs (or triplets) that represent the
phenomenon of moderate akanje in the toy language. Figure 23 illustrates an example of
three input levels for one lexical pair (in this case, the pair
<owl.F>[sɐvˈa]−<owl.PL>[sˈovɪ]̈). Once again, the symbol “−” is used to represent input
components with activities set to 0. After applying these three inputs to the network and
registering the hidden representations of each input, the cosine similarities are computed
between the hidden representation of <owl.−> and both hidden representations of [sov−]
and [sɐv−]. The results of these comparisons for all six lexical pairs with akanje are presented
in Table 17.

Table 17. Phonological similarities between the lexical meanings and their corresponding phonetic
realisations; means and standard deviations averaged over 100 language learners (in percents). The

network is trained on 44000 samples.

 [sov-] [sɐv-] [ʐar-] [ʐɐr-]
<owl> 82 (8) 80 (8) <heat> 83 (8) 83 (9)

[kot-] [kɐt-] [taz-] [tɐz-]
<cat> 87 (5) 84 (9) <basin> 88 (6) 87 (7)

[moj-] [mɐj-] [rab-] [rɐb-]
<my> 88 (5) 83 (7) <slave> 84 (8) 83 (8)

54

(a) Input level for <owl.−>

(b) Input level for [sov−]

(c) Input level for [sɐv−]

Figure 23. Input levels for (a) the lexical meaning <owl>,
(b) its phonetic realisation [sov−], and

(c) its phonetic realisation [sɐv−]

Table 17 reveals that for each lexical pair (or triplet), the difference in phonological
similarities between the lexical meaning and its two phonetic realisations is minimal.
Nevertheless, there is a slight trend of higher phonological similarity between the lexical
meanings <owl>, <cat>, and <my> and the sound [o], as opposed to the sound [ɐ].
Furthermore, there is an even subtler trend of higher phonological similarity between the
lexical meanings <heat>, <basin>, and <slave> and the sound [a], compared to the
sound [ɐ]. However, these findings should be interpreted with caution, considering the
relatively small difference between the mean values and the relatively high standard
deviations across 100 language learners.

55

5 Discussion

5.1 Answering the research questions

In this thesis, I aimed to answer the following two questions: first, whether distinct categories
for different sounds would emerge in the hidden levels of the trained network; and second, if
such categories were observed, whether the category for the sound [ɐ], resulting from
moderate akanje, would exhibit greater similarity to the category for [a] or to the category
for [o].

However, these questions now appear somewhat incomplete due to certain underlying
assumptions that have proven to be inaccurate. The initial premise was to conceptualise the
hidden levels of the neural network in my model as the phonological level in an abstract
grammar model. By the phonological level in an abstract grammar model, I mean a realm of
hidden representations within the human brain that connect sounds and meanings in a
language. With this conceptualisation, both questions were based on the assumption that the
phonological level is a monolith, and that processing in both directions, from sound to
meaning and from meaning to sound, is symmetrical. This assumption implied that a single
phonological representation was expected for both processes. However, the analysis
conducted in Section 4.4 revealed a discrepancy: the phonological categorisation that emerges
in the comprehension process differs from the one observed in the production process.

Therefore, the answer to the first research question is yes, distinct categories for different
sounds do emerge in the hidden levels of the trained network. However, this is not the end
of the story, as distinct categories for different meanings also emerge in the hidden levels of
the trained network, and the two sets of categories do not coincide.

The second research question regarding the phonological category for [ɐ] is similarly
incomplete, much like the first one. It primarily focuses on the comprehension process, not
because the production process was unimportant, but rather because a difference between
the two was not anticipated. This becomes evident when considering my initial expectations.
I hypothesised that [ɐ] would be more phonologically similar to [a] in case of the “strong
phonetic influence” and to [o] in case of “strong semantic influence” on phonological
categorisation. However, it is now apparent that the phonological representations of sounds
in comprehension are strongly influenced by phonetics, while the phonological forms of
meanings in production are strongly influenced by semantics. Thus, there is no need to choose
between these two influences, as they both coexist in phonology but manifest in two distinct
phonological representations.

56

Therefore, the answer to the second question is that the phonological category for the sound
[ɐ] does indeed emerge in comprehension, and it exhibits greater similarity to the
phonological category for [a] than to the category for [o]. However, there is no distinct
category for [ɐ] in production.

5.2 What do different phonological categorisations mean?

The discovery of two distinct phonological categorisations in production and comprehension
aligns with the BiPhon-OT grammar model (Boersma 2011), as depicted in Figure 2. In
BiPhon-OT, phonological representations consist of two distinct forms: the underlying form
and the surface form. By interpreting the results obtained in the Section 4.4, it becomes
possible to conceptualise the phonological representations in production as the underlying
forms in BiPhon-OT, while the phonological representations in comprehension can be seen as
the surface forms in BiPhon-OT.

The underlying form in BiPhon-OT is connected to semantic representations through a set of
lexical constraints, which can account for the observed semantic influence on the
phonological representations in production. Simultaneously, the surface form is connected to
phonetic representations through a set of cue constraints, which in turn explains the influence
of phonetics on the phonological representations observed in comprehension.

The question then arises, what in my analysis could represent the faithfulness constraints that
connect the underlying and surface forms? The answer to this question lies in Table 15, which
illustrates similarities between the phonological representations in comprehension and
production for the same words. Additionally, Table 17 demonstrates phonological similarities
between the lexical meanings and their corresponding phonetic realisations for the lexical
pairs and triplets with moderate akanje.

It would be interesting to use all the findings and their conceptualisations, aligning them with
the BiPhon-OT grammar model, and attempt to write down the underlying and surface forms
for some of the words in the toy language. Expressing the surface forms does not pose a
significant challenge since they are motivated by phonetics. Therefore, it is logical to reuse
the IPA symbols that were employed throughout this thesis to approximate the acoustic
qualities of sounds.

I will solely focus on the stems of the words for this exercise, as only the stems in the toy
language exhibit the phenomenon of moderate akanje and were the primary focus of the
analysis. For example, the surface form for the stem of [sɐvˈa] could be written as /sɐv/, while

57

the surface form for the stem of [sˈovɪ]̈ could be written as /sov/. These two different
notations reflect the distinct category of /ɐ/ in phonological categorisation for
comprehension. Similarly, for the lexical triplet [rɐˈba]─[rab]─[rɐˈbɨ], two possible surface
forms are /rɐb/ and /rab/. On the other hand, for the lexical pair [bot]─ [bˈotɪ]̈, there is only
one possible surface form: /bot/.

Contrary to the relatively straightforward task of writing down the surface forms, expressing
the underlying forms presents a slightly greater challenge. Traditionally, in phonology, the
IPA is employed to represent both surface and underlying forms. However, as observed in
Section 4.4, the categories that emerge in production, and thus belong to the underlying form,
have little to do with sounds, and are instead more motivated by semantics. Moreover, Section
4.6 provides evidence that a single semantic form corresponds to only one phonological
representation in production, and therefore can have only one underlying form. For example,
there exists one and only one underlying form for the lexical meaning <owl>, which exhibits
nearly equal phonological similarity with both surface forms /sɐv/ and /sov/, with a slight
preference for /sov/ as indicated in Table 17.

Choosing how to denote the underlying form in this case may appear arbitrary; however, I
will follow the phonological tradition by using the IPA for this purpose. Furthermore, when
deciding between |ɐ| and |o|, as well as between |ɐ| and |a|, I will select |o| and |a|,
respectively. This choice is motivated by the slightly more faithful connection between the
underlying forms and the phonemes /o/ and /a/, compared to the phoneme /ɐ/, as
demonstrated in Table 17. For example, the underlying form for the lexical meaning <owl>
will be represented as |sov|, while for the lexical meaning <slave>, the underlying form will
be denoted as |rab|, etc.

Taking these notations into consideration, it becomes easier to interpret the results presented
in Table 15 and address the question of why underlying and surface forms are the most similar
for the words that share the morphosyntactic meaning <M>. The reason behind this lies in
the fact that the surface forms of these words are the most faithful to their corresponding
underlying form as demonstrated by the notations |kot|/kot/, |bot|/bot/, |moj|/moj/,
|ʐar|/ʐar/, |taz|/taz/, |bar|/bar/, and |rab|/rab/. On the other hand, all the other words in
the toy language consist of two syllables and undergo either a moderate (in the first syllable)
or extreme (in the second syllable) form of vowel reduction. As a result, their surface forms
are less faithful to their underlying forms. This is precisely what we can observe in Table 15,
especially in its second row, which compares the phonological representations of more
experienced learners.

58

6 Conclusion

In this thesis, I have developed a neural network model capable of successfully acquiring a
toy language composed of a set of Russian words representing a specific case of vowel
reduction in Russian known as akanje. Through this model, I have investigated the underlying
principles of phonological categorisation in akanje. The trained network has demonstrated its
effectiveness in language comprehension and production, resulting in the emergence of
phonological categories at the hidden levels of the network. Remarkably, it has been observed
that the set of phonological categories that emerges in language comprehension differs from
the set of phonological categories that emerges in language production. These findings align
with the grammar model of Bidirectional Phonology and Phonetics (BiPhon-OT), highlighting
the distinction between the two phonological representations used in this model: Underlying
and Surface forms.

59

References

Barnes, Jonathan. 2007. Phonetics and phonology in Russian unstressed vowel reduction: A
study in hyperarticulation. Boston University, ms.

Blaho, Sylvia. 2008. The syntax of phonology: A radically substance-free approach. Tromsø:
University of Tromsø doctoral dissertation.

Boersma, Paul. 2011. A programme for bidirectional phonology and phonetics and their
acquisition and evolution. In Anton Benz & Jason Mattausch (eds.), Linguistik
Aktuell/Linguistics Today, vol. 180, 33–72. Amsterdam: John Benjamins Publishing
Company. https://doi.org/10.1075/la.180.02boe.

Boersma, Paul. 2019. Simulated distributional learning in deep Boltzmann machines leads
to the emergence of discrete categories. In Proceedings of the 19th International
Congress of Phonetic Sciences, 1520–1524.

Boersma, Paul, Titia Benders & Klaas Seinhorst. 2020. Neural network models for
phonology and phonetics. Journal of Language Modelling 8(1). 103-177.
https://doi.org/10.15398/jlm.v8i1.224.

Boersma, Paul, Kateřina Chládková & Titia Benders. 2022. Phonological features emerge
substance-freely from the phonetics and the morphology. Canadian Journal of
Linguistics/Revue canadienne de linguistique 67(4). 611–669.
https://doi.org/10.1017/cnj.2022.39.

Boersma, Paul & David Weenink. 2023. Praat: doing phonetics by computer [Computer
program]. Version 6.3.09. http://www.praat.org/. (20 April, 2023).

Browman, Catherine P. & Louis Goldstein. 1992. Articulatory phonology: An overview.
Phonetica 49(3–4). 155–180. https://doi.org/10.1159/000261913.

Chrabaszcz, Anna, Matthew Winn, Candise Y. Lin & William J. Idsardi. 2014. Acoustic cues
to perception of word stress by English, Mandarin, and Russian speakers. Journal of
Speech, Language, and Hearing Research 57(4). 1468–1479.
https://doi.org/10.1044/2014_JSLHR-L-13-0279.

Crosswhite, Katherine. 2000a. The analysis of extreme vowel reduction. UCLA Working
Papers in Linguistics 4(Papers in Phonology 4). 1–12.

Crosswhite, Katherine. 2000b. Vowel reduction in Russian: A unified account of standard,
dialectal, and “dissimilative” patterns. University of Rochester Working Papers in the
Language Sciences Spring 2000 (1). 107–172.

https://doi.org/10.1075/la.180.02boe
https://doi.org/10.15398/jlm.v8i1.224
https://doi.org/10.1017/cnj.2022.39
http://www.praat.org/
https://doi.org/10.1159/000261913
https://doi.org/10.1044/2014_JSLHR-L-13-0279

60

Ellson, John, Emden Gansner, Yifan Hu & Stephen North. 2023. Graphviz: open-source
graph visualisation software [Computer program]. Version 8.0.5.
https://graphviz.org/. (3 May, 2023).

Enguehard, Guillaume. 2019. A thought on the form and the substance of Russian vowel
reduction. In Denisa Lenertová, Roland Meyer, Radek Šimík & Luka Szucsich (eds.),
Advances in formal Slavic linguistics 2016, 109–125. Berlin: Language Science Press.
http://dx.doi.org/10.5281/zenodo.2545515.

Flemming, Edward. 2001. Scalar and categorical phenomena in a unified model of
phonetics and phonology. Phonology 18(1). 7–44.
https://doi.org/10.1017/S0952675701004006.

Flemming, Edward. 2002. Auditory representations in phonology (Outstanding Dissertations in
Linguistics). New York: Routledge.

Hale, Mark & Charles Reiss. 1998. Formal and empirical arguments concerning
phonological acquisition. Linguistic Inquiry 29(4). 656–683.
https://doi.org/10.1162/002438998553914.

Hale, Mark & Charles Reiss. 2000. “Substance abuse” and “dysfunctionalism”: Current
trends in phonology. Linguistic Inquiry 31(1). 157–169.
https://doi.org/10.1162/002438900554334.

Hall, Daniel Currie & Laura Teddiman. 2014. On substance in phonology. In Proceedings of
the 2014 annual conference of the Canadian Linguistic Association., 1–14.

Iosad, Pavel. 2012. Vowel reduction in Russian: No phonetics in phonology. Journal of
Linguistics 48(3). 521–571. https://doi.org/10.1017/S0022226712000102.

Iosad, Pavel. 2013. Representation and variation in substance-free phonology: A case study in
Celtic. Tromsø: University of Tromsø doctoral dissertation.

Iosad, Pavel. 2017. A Substance-free framework for phonology: an analysis of the Breton dialect
of Bothoa (Edinburgh Studies in Theoretical Linguistics). Edinburgh: Edinburgh
University Press.

Kniazev, Sergey & Evgeny Shaulskiy. 2007. The development of akanje in Russian: New
data. In Proceedings of ICPhS XVI (16th International Congress of Phonetic Sciences),
1425–1428.

Kuhl, Patricia. 1991. Human adults and human infants show a “perceptual magnet effect”
for the prototypes of speech categories, monkeys do not. Perception & psychophysics
50(2). 93–107.

https://graphviz.org/
http://dx.doi.org/10.5281/zenodo.2545515
https://doi.org/10.1017/S0952675701004006
https://doi.org/10.1162/002438998553914
https://doi.org/10.1162/002438900554334
https://doi.org/10.1017/S0022226712000102

61

Leonard, Matthew K. & Edward F. Chang. 2014. Dynamic speech representations in the
human temporal lobe. Trends in Cognitive Sciences 18(9). 472–479.
https://doi.org/10.1016/j.tics.2014.05.001.

Lunt, Horace G. 1979. On akanje and linguistic theory. Harvard Ukrainian Studies 3/4(Part
2). 595–608.

Morén, Bruce. 2003. The parallel structures model of feature geometry. Working Papers of
the Cornell Phonetics Laboratory 15. 194–270.

Ohala, John J. 1990. There is no interface between phonology and phonetics: a personal
view. Journal of Phonetics 18(2). 153–171. https://doi.org/10.1016/S0095-
4470(19)30399-7.

Padgett, Jaye. 2004. Russian vowel reduction and Dispersion Theory. Phonological studies 7.
81–96.

Padgett, Jaye & Marija Tabain. 2005. Adaptive Dispersion Theory and phonological vowel
reduction in Russian. Phonetica 62(1). 14–54. https://doi.org/10.1159/000087223.

Popham, Sara F., Alexander G. Huth, Natalia Y. Bilenko, Fatma Deniz, James S. Gao, Anwar
O. Nunez-Elizalde & Jack L. Gallant. 2021. Visual and linguistic semantic
representations are aligned at the border of human visual cortex. Nature Neuroscience
24(11). 1628–1636. https://doi.org/10.1038/s41593-021-00921-6.

Prince, Alan & Paul Smolensky. 1993. Optimality Theory: Constraint interaction in generative
grammar. Technical report 2. Rutgers University Center for Cognitive Science.
(Published in 2002 as technical documentation by Rutgers University.)
https://doi.org/10.7282/T34M92MV

Prince, Alan & Paul Smolensky. 1997. Optimality: From neural networks to universal
grammar. Science 275(5306). 1604–1610.
https://doi.org/10.1126/science.275.5306.1604.

Prince, Alan & Paul Smolensky. 2003. Optimality Theory in phonology. In William Frawley
(ed.), International encyclopedia of linguistics (3), 212–222. 2nd edn. Oxford
University Press. https://doi.org/10.1093/acref/9780195139778.001.0001.

Reiss, Charles. 2017. Substance Free phonology. In S. J. Hannahs & Anna R. K. Bosch (eds.),
The Routledge Handbook of Phonological Theory, 425–452. 1st edn. Routledge.

Reiss, Charles & Veno Volenec. 2022. Conquer primal fear: Phonological features are innate
and substance-free. Canadian Journal of Linguistics/Revue canadienne de linguistique
67(4). 581–610.

https://doi.org/10.1016/j.tics.2014.05.001
https://doi.org/10.1016/S0095-4470(19)30399-7
https://doi.org/10.1016/S0095-4470(19)30399-7
https://doi.org/10.1159/000087223
https://doi.org/10.1038/s41593-021-00921-6
https://doi.org/10.7282/T34M92MV
https://doi.org/10.1126/science.275.5306.1604
https://doi.org/10.1093/acref/9780195139778.001.0001

62

Salakhutdinov, Ruslan & Geoffrey Hinton. 2009. Deep Boltzmann machines. In Proceedings
of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS).
Clearwater Beach, Florida, USA.

Salakhutdinov, Ruslan. 2010. Learning deep Boltzmann machines using adaptive MCMC. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), 943–
950.

Salakhutdinov, Ruslan & Hugo Larochelle. 2010. Efficient learning of deep Boltzmann
machines. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics (JMLR Workshop and Conference Proceedings), vol. 9, 693–
700. PMLR.

Shchupak, Anastasia. 2022. Akanje and Optimality Theory: employing the bidirectional
grammar model BiPhon to analyse one case of vowel reduction in Russian. Amsterdam:
University of Amsterdam paper for the course Linguistic Theories in the BA
Linguistics. https://www.fon.hum.uva.nl/archive/2022/other/2022-lingthy-
AnastasiaShchupak.pdf.

Smolensky, Paul. 1996. On the comprehension/production dilemma in child language.
Linguistic Inquiry 27(4). 720–731.

The MathWorks Inc. 2023. MATLAB [Computer program]. Version 9.14 (R2023a). Natick,
Massachusetts: The MathWorks Inc. https://www.mathworks.com. (4 May, 2023).

https://www.fon.hum.uva.nl/archive/2022/other/2022-lingthy-AnastasiaShchupak.pdf
https://www.fon.hum.uva.nl/archive/2022/other/2022-lingthy-AnastasiaShchupak.pdf
https://www.mathworks.com/

Appendix 1: Proficiency tables

Table A1.1. Comprehension proficiency: cosine similarities between the entire comprehension outputs for all possible standard auditory inputs (in rows)
and the entire standard input representations of all possible words (in columns); means and standard deviations averaged over 100 toy language learners

(in percents) 6. The network is trained on 44000 samples.

6 The average comprehension accuracy over all comprehended words (per word shown in the diagonal of the table): M = 96.27%, STD = 3.68%.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

[sɐvˈa] 96 (4) 38 (5) 20 (4) 6 (5) 8 (6) 23 (4) 9 (6) 6 (5) 63 (4) 8 (5) 22 (4) 64 (6) 26 (6) 39 (5) 25 (5) 26 (6) 23 (4) 26 (6) 26 (6) 64 (3) 26 (7) 23 (4)
[sˈovɪ]̈ 37 (6) 95 (6) 30 (5) 64 (5) 33 (7) 17 (7) 33 (6) 63 (6) 5 (5) 33 (7) 17 (7) 6 (5) 5 (9) -3 (4) 31 (4) 4 (8) 16 (7) 5 (8) 31 (5) 5 (5) 4 (8) 17 (6)
[rˈozə] 20 (5) 32 (4) 95 (2) 65 (3) 33 (4) -7 (4) 33 (4) 32 (4) 20 (5) 33 (4) -7 (4) 20 (5) 3 (4) 29 (3) -1 (5) 14 (4) 6 (4) 3 (4) -2 (4) 33 (5) 15 (4) 6 (4)
[rˈozɪ]̈ 3 (5) 62 (5) 63 (4) 95 (6) 32 (8) 14 (6) 32 (9) 62 (5) 3 (4) 33 (9) 15 (5) 3 (5) 2 (10) -2 (5) 29 (5) 14 (10) 27 (5) 2 (9) 28 (5) 16 (5) 14 (8) 27 (6)
[kot] 7 (2) 30 (2) 31 (2) 30 (2) 98 (1) 36 (2) 83 (1) 42 (2) 7 (3) 73 (2) 7 (2) 7 (3) 48 (2) 4 (2) 3 (2) 48 (2) 7 (2) 48 (2) 3 (3) 7 (3) 48 (2) 7 (3)

[kɐtˈɨ] 24 (4) 17 (6) -5 (4) 18 (5) 40 (9) 94 (7) 22 (10) 30 (6) 24 (4) 11 (10) 61 (6) 25 (4) 28 (9) 14 (5) 37 (6) 28 (10) 61 (6) 28 (10) 37 (5) 25 (4) 28 (9) 62 (6)
[bot] 6 (3) 32 (1) 32 (2) 32 (2) 83 (1) 17 (3) 98 (1) 60 (1) 6 (3) 73 (1) 6 (3) 6 (3) 47 (2) 3 (2) 3 (2) 47 (3) 5 (3) 57 (2) 14 (2) 6 (3) 47 (2) 6 (3)

[bˈotɪ]̈ 4 (6) 61 (7) 30 (4) 61 (6) 47 (10) 29 (7) 64 (10) 93 (9) 5 (5) 36 (11) 16 (6) 5 (5) 8 (13) -2 (5) 29 (5) 7 (13) 16 (6) 19 (12) 42 (7) 5 (6) 8 (13) 16 (6)
[mɐjˈa] 63 (3) 5 (5) 19 (4) 5 (5) 8 (5) 24 (3) 8 (6) 5 (5) 96 (3) 37 (5) 57 (3) 63 (3) 25 (5) 39 (5) 24 (5) 24 (5) 23 (4) 25 (5) 24 (5) 63 (3) 25 (5) 24 (3)

[moj] 7 (3) 30 (2) 31 (2) 30 (2) 72 (2) 7 (3) 73 (1) 31 (2) 36 (3) 98 (1) 36 (3) 7 (3) 48 (2) 3 (2) 3 (3) 48 (3) 7 (3) 48 (3) 3 (3) 7 (3) 48 (2) 7 (3)
[mɐjˈɨ] 24 (4) 18 (5) -6 (4) 18 (5) 9 (6) 62 (3) 8 (6) 17 (5) 58 (3) 38 (6) 95 (4) 24 (3) 26 (6) 14 (4) 38 (5) 26 (6) 62 (4) 26 (6) 38 (5) 24 (4) 27 (6) 62 (4)
[ʐɐˈra] 63 (4) 6 (6) 19 (5) 6 (6) 9 (8) 24 (3) 9 (8) 6 (6) 63 (5) 9 (7) 24 (3) 96 (5) 56 (5) 52 (6) 39 (5) 27 (6) 24 (4) 38 (6) 39 (5) 63 (4) 27 (6) 24 (3)

[ʐar] 26 (3) 4 (2) 3 (2) 3 (2) 48 (2) 26 (3) 48 (2) 3 (2) 26 (3) 48 (2) 26 (3) 54 (2) 99 (1) 44 (2) 44 (2) 74 (1) 26 (3) 84 (1) 44 (2) 26 (3) 74 (2) 25 (3)
[ʐˈabə] 41 (4) -2 (4) 28 (3) -1 (4) 4 (4) 16 (4) 4 (4) -1 (4) 41 (4) 4 (4) 16 (4) 54 (4) 46 (3) 96 (1) 66 (3) 34 (3) 15 (4) 35 (3) 33 (4) 54 (4) 46 (3) 29 (4)
[ʐˈabɪ]̈ 24 (5) 29 (5) 0 (4) 30 (4) 5 (10) 36 (6) 5 (9) 30 (6) 24 (5) 4 (10) 35 (7) 38 (5) 46 (8) 65 (5) 95 (7) 34 (9) 36 (6) 34 (8) 63 (6) 38 (5) 45 (8) 49 (7)

[taz] 25 (2) 3 (2) 14 (2) 14 (2) 48 (2) 26 (3) 48 (2) 3 (2) 25 (2) 48 (2) 26 (2) 25 (2) 73 (1) 32 (1) 32 (1) 99 (1) 55 (2) 74 (1) 32 (1) 25 (2) 73 (1) 26 (2)
[tɐzˈɨ] 24 (4) 17 (5) 7 (4) 30 (5) 10 (7) 62 (4) 10 (7) 18 (4) 25 (4) 10 (7) 62 (5) 25 (4) 28 (7) 15 (5) 39 (5) 57 (6) 95 (5) 28 (7) 39 (5) 25 (4) 28 (7) 62 (5)
[bar] 25 (2) 4 (2) 4 (2) 4 (2) 48 (2) 25 (3) 58 (2) 15 (2) 25 (3) 48 (2) 24 (3) 37 (3) 84 (1) 34 (2) 33 (2) 74 (2) 25 (3) 99 (1) 61 (1) 25 (3) 74 (1) 25 (3)

[bˈarɪ]̈ 27 (4) 30 (5) -1 (4) 30 (5) 6 (10) 38 (6) 18 (10) 43 (5) 27 (5) 7 (10) 38 (6) 39 (5) 47 (8) 32 (4) 64 (6) 36 (9) 38 (7) 64 (8) 96 (6) 26 (4) 35 (8) 37 (6)
[rɐˈba] 63 (3) 4 (5) 32 (4) 17 (5) 7 (5) 24 (3) 7 (6) 4 (5) 63 (3) 7 (6) 24 (4) 63 (3) 25 (5) 52 (5) 38 (5) 25 (5) 24 (3) 25 (5) 25 (4) 96 (3) 55 (4) 57 (4)

[rab] 24 (3) 3 (2) 14 (2) 14 (2) 48 (2) 25 (3) 47 (2) 3 (2) 25 (3) 48 (2) 25 (2) 24 (3) 73 (1) 43 (2) 42 (1) 73 (1) 25 (2) 73 (1) 31 (1) 54 (3) 99 (1) 54 (2)
[rɐˈbɨ] 24 (4) 17 (5) 6 (4) 29 (5) 9 (8) 62 (5) 9 (8) 17 (5) 24 (4) 9 (8) 62 (5) 24 (4) 28 (7) 27 (4) 51 (6) 28 (7) 62 (5) 28 (8) 38 (6) 58 (4) 57 (7) 95 (6)

64

Table A1.2. Comprehension proficiency: cosine similarities between the entire comprehension outputs for all possible standard auditory inputs (in rows)
and the entire standard input representations of all possible words (in columns); means and standard deviations averaged over 100 toy language learners

(in percents) 7. The network is trained on 88000 samples.

7 The average comprehension accuracy over all comprehended words (per word shown in the diagonal of the table): M = 93.5%, STD = 7.59%.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

[sɐvˈa] 92 (11) 37 (5) 17 (8) 5 (6) 12 (12) 23 (5) 13 (13) 6 (7) 61 (8) 13 (13) 23 (5) 60 (10) 29 (11) 38 (7) 25 (6) 30 (12) 24 (4) 29 (12) 25 (6) 61 (8) 30 (12) 24 (4)
[sˈovɪ]̈ 38 (5) 94 (9) 30 (4) 62 (7) 36 (10) 17 (6) 36 (10) 62 (7) 6 (5) 36 (10) 17 (6) 6 (5) 8 (12) -2 (5) 30 (5) 8 (12) 17 (6) 8 (12) 30 (5) 6 (5) 8 (12) 16 (6)
[rˈozə] 18 (6) 32 (5) 93 (8) 64 (6) 35 (9) -7 (5) 35 (9) 32 (5) 18 (6) 35 (8) -6 (5) 18 (5) 5 (10) 28 (5) -1 (6) 17 (8) 6 (5) 6 (10) -1 (6) 30 (6) 16 (8) 6 (5)
[rˈozɪ]̈ 5 (6) 60 (8) 63 (8) 92 (11) 37 (11) 14 (7) 38 (11) 60 (7) 5 (7) 38 (11) 14 (7) 4 (7) 9 (13) -1 (7) 28 (6) 20 (12) 27 (8) 9 (13) 28 (6) 17 (7) 19 (12) 26 (7)
[kot] 7 (2) 31 (2) 32 (2) 31 (2) 98 (2) 36 (3) 83 (2) 43 (2) 7 (3) 73 (2) 7 (3) 7 (3) 48 (2) 4 (3) 3 (3) 47 (3) 7 (4) 47 (3) 3 (3) 7 (3) 48 (2) 8 (3)

[kɐtˈɨ] 28 (7) 13 (7) -2 (6) 13 (7) 48 (12) 88 (12) 31 (14) 26 (7) 28 (7) 20 (14) 56 (10) 28 (7) 36 (13) 17 (7) 32 (8) 37 (13) 57 (10) 37 (13) 33 (8) 28 (7) 37 (13) 57 (9)
[bot] 7 (2) 32 (2) 32 (2) 32 (2) 83 (1) 18 (2) 98 (2) 61 (2) 7 (3) 73 (2) 6 (3) 7 (3) 47 (3) 3 (2) 3 (2) 47 (2) 6 (3) 57 (3) 14 (3) 7 (2) 47 (2) 6 (2)

[bˈotɪ]̈ 7 (6) 58 (9) 30 (5) 58 (9) 53 (14) 27 (8) 69 (12) 89 (11) 6 (6) 41 (15) 14 (7) 6 (6) 14 (16) -1 (5) 27 (8) 13 (15) 14 (8) 24 (15) 38 (9) 7 (6) 14 (16) 14 (8)
[mɐjˈa] 58 (9) 7 (7) 16 (7) 7 (7) 16 (15) 24 (5) 16 (15) 6 (7) 90 (12) 45 (13) 56 (5) 58 (10) 33 (14) 35 (9) 25 (6) 33 (14) 24 (5) 32 (14) 25 (7) 58 (10) 33 (14) 24 (5)

[moj] 7 (4) 31 (3) 32 (2) 31 (3) 72 (2) 7 (2) 73 (2) 31 (3) 36 (4) 98 (3) 36 (3) 7 (4) 48 (4) 3 (3) 3 (3) 48 (3) 7 (3) 47 (4) 3 (5) 7 (3) 48 (2) 7 (2)
[mɐjˈɨ] 27 (5) 15 (7) -3 (6) 15 (8) 18 (14) 58 (9) 18 (14) 15 (8) 59 (6) 46 (12) 89 (12) 28 (6) 35 (14) 16 (7) 34 (9) 35 (13) 57 (10) 35 (13) 34 (9) 28 (6) 35 (14) 58 (9)
[ʐɐˈra] 60 (10) 6 (7) 16 (7) 6 (6) 14 (14) 25 (5) 15 (14) 7 (6) 60 (9) 15 (14) 25 (5) 92 (11) 61 (11) 49 (10) 39 (7) 33 (14) 25 (5) 44 (12) 39 (7) 60 (9) 33 (13) 25 (5)

[ʐar] 25 (2) 4 (2) 3 (2) 3 (2) 48 (2) 25 (2) 48 (2) 4 (2) 25 (2) 48 (2) 25 (2) 54 (2) 99 (1) 44 (1) 44 (1) 74 (1) 25 (2) 84 (1) 44 (1) 25 (2) 74 (1) 25 (2)
[ʐˈabə] 39 (6) -1 (5) 28 (5) -1 (5) 6 (10) 14 (5) 7 (10) -1 (5) 39 (7) 6 (10) 14 (5) 52 (6) 47 (7) 94 (7) 65 (5) 36 (8) 14 (5) 36 (8) 33 (4) 51 (6) 47 (8) 26 (4)
[ʐˈabɪ]̈ 27 (6) 27 (5) 2 (7) 28 (6) 11 (13) 34 (8) 11 (13) 28 (5) 27 (6) 11 (13) 34 (7) 40 (6) 51 (10) 66 (7) 92 (9) 40 (11) 34 (8) 40 (11) 60 (7) 40 (6) 51 (10) 46 (8)

[taz] 25 (2) 3 (2) 15 (2) 15 (2) 48 (2) 25 (2) 48 (2) 3 (2) 25 (2) 48 (2) 25 (2) 25 (2) 73 (1) 32 (2) 32 (1) 99 (1) 54 (2) 73 (1) 32 (1) 25 (2) 73 (1) 25 (2)
[tɐzˈɨ] 28 (6) 13 (8) 10 (6) 26 (7) 19 (15) 57 (9) 19 (15) 13 (7) 28 (6) 19 (15) 57 (9) 29 (7) 38 (14) 18 (6) 34 (9) 66 (12) 89 (11) 38 (13) 34 (9) 29 (6) 38 (13) 57 (9)
[bar] 25 (3) 4 (2) 4 (2) 4 (2) 48 (2) 24 (3) 58 (2) 15 (2) 25 (2) 48 (2) 24 (2) 36 (2) 84 (1) 33 (1) 33 (1) 73 (1) 24 (2) 99 (1) 62 (2) 25 (3) 74 (1) 24 (3)

[bˈarɪ]̈ 28 (6) 28 (7) 2 (6) 28 (6) 14 (14) 34 (8) 25 (14) 40 (7) 28 (6) 14 (15) 35 (8) 41 (7) 53 (12) 34 (5) 60 (8) 42 (12) 35 (8) 70 (11) 91 (10) 28 (6) 42 (12) 34 (8)
[rɐˈba] 60 (9) 6 (6) 28 (8) 18 (6) 14 (14) 25 (4) 14 (14) 6 (6) 60 (9) 13 (13) 24 (5) 60 (8) 31 (13) 48 (11) 37 (7) 31 (12) 24 (4) 31 (12) 26 (6) 92 (11) 59 (10) 57 (4)

[rab] 25 (2) 3 (2) 14 (2) 14 (2) 48 (2) 25 (3) 47 (2) 3 (2) 25 (3) 48 (3) 25 (3) 25 (3) 73 (1) 43 (1) 43 (1) 73 (2) 25 (2) 73 (1) 32 (2) 54 (3) 99 (2) 54 (2)
[rɐˈbɨ] 28 (6) 14 (7) 9 (6) 26 (8) 17 (12) 58 (9) 16 (13) 14 (8) 28 (6) 16 (12) 58 (9) 29 (6) 35 (12) 30 (7) 47 (9) 35 (12) 58 (8) 35 (12) 35 (8) 61 (7) 63 (10) 90 (10)

65

Table A1.3. Production proficiency: cosine similarities between the entire production outputs for all possible semantic inputs (in rows) and the entire
standard input representations of all possible words (in columns); means and standard deviations averaged over 100 toy language learners (in percents) 8.

The network is trained on 44000 samples; semantic nodes of the input are unclamped.

8 The average production accuracy over all produced words (per word shown in the diagonal of the table): M = 76.05%, STD = 10.18%.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

owl.F 74 (8) 44 (10) 37 (10) 11 (10) 18 (8) 8 (11) 17 (9) 11 (10) 40 (8) 17 (9) 8 (10) 40 (9) 18 (9) 39 (9) 14 (10) 19 (9) 8 (10) 18 (9) 12 (11) 41 (9) 20 (9) 9 (10)
owl.PL 44 (9) 75 (10) 13 (9) 42 (11) 22 (10) 33 (9) 22 (10) 42 (10) 10 (9) 22 (10) 33 (9) 9 (9) 20 (11) 12 (9) 41 (10) 22 (11) 34 (9) 20 (11) 40 (11) 11 (10) 21 (11) 34 (9)
rose.F 26 (11) 17 (11) 74 (12) 47 (11) 26 (9) 5 (9) 24 (9) 19 (10) 28 (9) 25 (10) 3 (10) 30 (10) 19 (12) 38 (11) 10 (12) 21 (11) 8 (12) 19 (12) 14 (12) 34 (11) 22 (10) 9 (10)

rose.PL 3 (10) 45 (11) 47 (11) 73 (12) 25 (10) 29 (10) 23 (10) 46 (10) 5 (9) 24 (11) 28 (9) 8 (11) 19 (10) 11 (11) 37 (11) 20 (11) 32 (13) 19 (11) 42 (11) 12 (10) 22 (9) 34 (11)
cat.M 14 (6) 18 (8) 20 (8) 20 (7) 86 (7) 42 (7) 68 (8) 26 (8) 14 (8) 62 (7) 15 (8) 15 (9) 59 (8) 16 (8) 15 (9) 58 (7) 14 (8) 59 (7) 15 (9) 15 (7) 60 (7) 16 (8)
cat.PL 12 (10) 37 (12) 13 (11) 38 (11) 47 (9) 69 (10) 27 (10) 43 (12) 11 (10) 20 (9) 39 (12) 11 (10) 23 (12) 14 (11) 39 (11) 21 (12) 37 (11) 22 (12) 38 (10) 12 (10) 23 (11) 39 (11)
bot.M 11 (8) 22 (8) 24 (8) 24 (8) 68 (9) 15 (10) 85 (7) 46 (8) 14 (8) 65 (8) 12 (9) 13 (10) 55 (8) 15 (9) 16 (9) 57 (8) 14 (9) 57 (8) 15 (9) 16 (10) 58 (8) 15 (9)
bot.PL 11 (11) 44 (12) 17 (9) 44 (11) 30 (12) 35 (12) 50 (11) 70 (12) 10 (11) 27 (11) 31 (10) 9 (12) 18 (14) 12 (10) 39 (10) 22 (14) 34 (10) 21 (14) 37 (13) 13 (11) 21 (13) 33 (11)
mine.F 38 (11) 10 (10) 36 (10) 10 (10) 18 (10) 8 (10) 19 (11) 9 (10) 70 (13) 49 (9) 42 (11) 36 (12) 19 (9) 39 (10) 13 (11) 19 (10) 7 (11) 19 (11) 10 (12) 38 (12) 21 (10) 9 (10)

mine.M 13 (7) 20 (7) 20 (6) 20 (6) 63 (6) 13 (6) 63 (6) 20 (7) 43 (7) 89 (6) 43 (6) 14 (7) 58 (6) 14 (6) 15 (6) 58 (7) 14 (7) 59 (6) 15 (7) 14 (7) 59 (6) 14 (7)
mine.PL 9 (11) 38 (10) 12 (10) 39 (10) 20 (11) 36 (11) 21 (10) 39 (10) 42 (11) 50 (9) 69 (13) 8 (10) 20 (10) 13 (9) 40 (10) 21 (10) 35 (12) 21 (10) 39 (11) 9 (11) 21 (10) 36 (12)

heat.F 40 (13) 10 (11) 39 (11) 17 (10) 25 (14) 14 (11) 24 (14) 12 (12) 39 (11) 21 (13) 10 (10) 68 (11) 46 (11) 38 (11) 16 (11) 20 (13) 11 (11) 26 (13) 14 (11) 43 (14) 23 (14) 14 (11)
heat.M 17 (8) 17 (8) 20 (7) 21 (7) 62 (8) 20 (10) 62 (8) 20 (9) 18 (8) 60 (8) 18 (8) 43 (8) 80 (8) 22 (9) 23 (9) 59 (8) 19 (9) 64 (9) 22 (10) 21 (9) 60 (8) 20 (9)
toad.F 30 (12) 13 (12) 38 (10) 12 (10) 19 (11) 7 (11) 20 (11) 14 (13) 34 (12) 23 (12) 11 (12) 32 (14) 27 (13) 69 (14) 43 (14) 27 (12) 10 (12) 19 (14) 12 (17) 32 (14) 26 (13) 9 (12)
toad.P 10 (11) 40 (11) 12 (10) 37 (11) 18 (13) 29 (13) 19 (14) 39 (12) 13 (12) 22 (12) 34 (13) 12 (13) 27 (12) 45 (11) 70 (13) 27 (12) 33 (12) 20 (13) 40 (17) 11 (13) 27 (13) 33 (14)

basin.M 21 (7) 13 (7) 20 (8) 21 (8) 55 (6) 19 (8) 57 (7) 14 (8) 20 (7) 56 (7) 20 (8) 19 (7) 63 (8) 22 (7) 22 (7) 88 (8) 47 (7) 63 (8) 20 (9) 19 (7) 63 (7) 19 (8)
basin.PL 17 (10) 31 (10) 14 (10) 40 (11) 15 (10) 42 (10) 18 (10) 32 (10) 16 (9) 17 (10) 43 (10) 15 (10) 27 (10) 18 (9) 44 (10) 56 (8) 74 (10) 27 (9) 41 (11) 15 (10) 27 (10) 42 (11)

bar.M 19 (8) 9 (8) 12 (7) 12 (8) 54 (7) 20 (9) 57 (8) 15 (9) 22 (8) 55 (8) 21 (7) 24 (9) 71 (9) 24 (8) 24 (8) 65 (8) 18 (9) 88 (7) 49 (8) 23 (9) 69 (7) 23 (9)
bar.PL 15 (12) 33 (11) 9 (11) 35 (11) 14 (11) 36 (12) 19 (10) 36 (11) 16 (11) 16 (11) 39 (10) 19 (12) 34 (12) 20 (10) 46 (11) 27 (11) 34 (11) 54 (10) 76 (11) 16 (14) 32 (12) 39 (12)
slave.F 44 (11) 6 (11) 38 (12) 14 (10) 17 (13) 14 (10) 19 (13) 6 (10) 44 (11) 18 (12) 16 (10) 42 (13) 24 (13) 44 (12) 21 (11) 21 (12) 11 (10) 24 (13) 12 (10) 73 (12) 51 (11) 45 (10)

slave.M 20 (9) 15 (9) 21 (9) 21 (8) 58 (8) 18 (10) 60 (8) 17 (9) 20 (8) 59 (8) 19 (8) 19 (11) 61 (9) 23 (9) 24 (10) 57 (9) 14 (9) 61 (9) 19 (11) 44 (8) 83 (8) 44 (8)
slave.PL 17 (13) 32 (11) 14 (10) 40 (10) 20 (13) 40 (11) 22 (11) 33 (11) 16 (11) 21 (13) 41 (10) 16 (12) 27 (12) 19 (13) 45 (12) 24 (12) 38 (13) 28 (11) 39 (12) 45 (12) 53 (11) 70 (12)

66

Table A1.4. Production proficiency: cosine similarities between the entire production outputs for all possible semantic inputs (in rows) and the entire
standard input representations of all possible words (in columns); means and standard deviations averaged over 100 toy language learners (in percents) 9.

The network is trained on 44000 samples; semantic nodes of the input are clamped.

9 The average production accuracy over all produced words (per word shown in the diagonal of the table): M = 81.64%, STD = 7.59%.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

owl.F 76 (7) 47 (9) 37 (9) 12 (10) 18 (7) 8 (10) 18 (8) 12 (10) 41 (8) 18 (7) 8 (10) 41 (8) 19 (7) 38 (9) 13 (10) 19 (7) 8 (9) 19 (7) 13 (9) 41 (8) 19 (7) 8 (10)
owl.PL 45 (9) 78 (8) 13 (8) 43 (9) 21 (7) 34 (9) 21 (7) 43 (9) 10 (9) 21 (7) 34 (8) 10 (9) 19 (7) 11 (8) 41 (9) 20 (7) 34 (8) 19 (8) 42 (9) 10 (9) 19 (8) 33 (8)
rose.F 27 (8) 18 (8) 81 (8) 52 (8) 24 (7) 3 (8) 24 (6) 19 (8) 28 (8) 24 (7) 2 (7) 28 (9) 16 (8) 37 (8) 8 (9) 25 (8) 13 (9) 16 (8) 10 (9) 39 (9) 25 (7) 13 (7)

rose.PL 3 (7) 47 (9) 52 (7) 81 (8) 23 (6) 28 (9) 24 (6) 49 (7) 4 (7) 23 (7) 28 (8) 5 (9) 16 (8) 9 (8) 38 (8) 23 (7) 38 (9) 16 (7) 40 (8) 15 (8) 24 (6) 39 (8)
cat.M 14 (6) 19 (6) 20 (6) 20 (6) 89 (6) 44 (6) 72 (6) 30 (7) 14 (6) 63 (6) 15 (6) 15 (6) 60 (6) 15 (7) 15 (7) 59 (6) 14 (7) 59 (6) 15 (7) 14 (6) 59 (6) 15 (6)
cat.PL 11 (9) 37 (10) 11 (9) 38 (10) 49 (7) 75 (9) 29 (7) 48 (10) 10 (9) 19 (7) 40 (9) 11 (8) 21 (8) 12 (8) 39 (9) 21 (8) 41 (9) 21 (8) 38 (9) 12 (8) 22 (7) 42 (9)
bot.M 11 (6) 24 (6) 26 (5) 26 (6) 75 (5) 19 (7) 91 (4) 53 (5) 11 (6) 67 (5) 10 (6) 11 (6) 54 (5) 12 (6) 13 (6) 56 (6) 11 (6) 62 (6) 20 (6) 13 (6) 56 (5) 12 (6)
bot.PL 8 (8) 47 (9) 19 (7) 48 (9) 34 (7) 41 (8) 54 (7) 80 (9) 8 (8) 25 (7) 31 (8) 7 (8) 15 (8) 10 (8) 39 (8) 17 (9) 33 (8) 25 (8) 47 (9) 10 (8) 17 (8) 33 (9)
mine.F 40 (9) 9 (10) 35 (9) 9 (10) 18 (8) 9 (9) 18 (8) 9 (10) 75 (9) 49 (7) 44 (9) 39 (10) 19 (8) 37 (8) 11 (9) 19 (8) 9 (10) 19 (8) 10 (10) 40 (9) 20 (8) 10 (9)

mine.M 13 (6) 20 (6) 20 (6) 20 (6) 63 (5) 13 (6) 64 (5) 20 (6) 43 (6) 90 (5) 43 (6) 13 (6) 59 (6) 14 (6) 15 (6) 59 (6) 13 (6) 59 (6) 15 (7) 13 (6) 59 (6) 13 (6)
mine.PL 10 (9) 39 (8) 11 (8) 39 (8) 19 (7) 38 (9) 20 (7) 39 (9) 45 (9) 50 (7) 73 (9) 9 (8) 20 (6) 12 (7) 41 (8) 21 (7) 38 (9) 21 (6) 40 (8) 10 (8) 21 (7) 38 (9)

heat.F 43 (10) 9 (9) 35 (9) 12 (9) 20 (9) 13 (9) 20 (9) 9 (9) 43 (9) 19 (9) 12 (9) 76 (9) 49 (8) 44 (10) 21 (11) 20 (9) 13 (9) 30 (9) 20 (10) 44 (9) 21 (9) 13 (9)
heat.M 18 (7) 16 (6) 18 (7) 18 (7) 61 (7) 19 (7) 60 (6) 17 (7) 19 (7) 60 (6) 18 (7) 47 (7) 85 (7) 26 (8) 27 (7) 61 (6) 19 (7) 69 (7) 27 (8) 20 (6) 61 (6) 19 (7)
toad.F 32 (9) 11 (10) 38 (8) 10 (8) 16 (8) 6 (8) 16 (8) 11 (9) 33 (9) 17 (8) 7 (8) 42 (10) 32 (9) 80 (9) 52 (10) 24 (8) 6 (8) 21 (9) 17 (10) 41 (10) 32 (9) 15 (9)
toad.P 9 (9) 41 (9) 12 (9) 40 (8) 16 (10) 31 (9) 16 (10) 40 (9) 9 (9) 17 (9) 32 (9) 18 (10) 31 (9) 52 (9) 79 (10) 24 (8) 32 (9) 21 (9) 45 (11) 18 (10) 31 (9) 41 (10)

basin.M 20 (6) 13 (6) 22 (6) 23 (6) 56 (5) 21 (6) 57 (6) 13 (6) 20 (6) 56 (6) 21 (6) 20 (6) 65 (6) 22 (7) 22 (7) 91 (6) 50 (6) 65 (6) 22 (7) 20 (6) 65 (6) 20 (6)
basin.PL 16 (8) 30 (9) 15 (7) 41 (9) 14 (7) 45 (8) 15 (8) 30 (9) 16 (8) 14 (7) 45 (8) 15 (8) 27 (7) 17 (7) 44 (8) 57 (6) 79 (8) 27 (7) 44 (8) 15 (8) 27 (7) 45 (8)

bar.M 19 (6) 10 (5) 11 (5) 11 (5) 54 (5) 19 (7) 62 (5) 20 (6) 21 (6) 55 (5) 20 (5) 29 (5) 75 (5) 25 (6) 25 (6) 67 (6) 19 (6) 92 (5) 53 (6) 21 (6) 69 (5) 21 (6)
bar.PL 15 (10) 33 (8) 6 (8) 35 (8) 11 (8) 38 (9) 21 (7) 43 (8) 16 (10) 13 (8) 40 (8) 25 (10) 37 (8) 21 (8) 50 (9) 28 (8) 38 (9) 56 (7) 83 (8) 17 (11) 30 (7) 41 (9)
slave.F 44 (8) 4 (9) 41 (9) 16 (9) 15 (7) 14 (9) 15 (7) 4 (9) 44 (9) 15 (7) 14 (9) 44 (9) 23 (8) 50 (8) 25 (9) 22 (8) 13 (10) 23 (8) 13 (9) 78 (8) 53 (7) 48 (9)

slave.M 19 (7) 14 (7) 23 (7) 23 (7) 58 (6) 19 (8) 58 (6) 15 (7) 19 (7) 58 (6) 19 (6) 19 (7) 63 (6) 29 (7) 29 (7) 62 (6) 18 (6) 63 (6) 20 (7) 48 (7) 88 (6) 48 (6)
slave.PL 15 (9) 32 (9) 17 (8) 43 (9) 17 (9) 43 (9) 18 (9) 33 (9) 15 (9) 17 (9) 43 (8) 14 (9) 24 (7) 24 (9) 51 (10) 23 (8) 42 (10) 25 (8) 41 (10) 49 (9) 54 (7) 76 (9)

67

Table A1.5. Production proficiency: cosine similarities between the entire production outputs for all possible semantic inputs (in rows) and the entire
standard input representations of all possible words (in columns); means and standard deviations averaged over 100 toy language learners (in percents) 10.

The network is trained on 88000 samples; semantic nodes of the input are clamped.

10 The average production accuracy over all produced words (per word shown in the diagonal of the table): M = 76.27%, STD = 8.95%.

owl.F

[sɐvˈa]
owl.PL
[sˈovɪ]̈

rose.F
[rˈozə]

rose.PL
[rˈozɪ]̈

cat.M
[kot]

cat.PL
[kɐtˈɨ]

bot.M
[bot]

bot.PL
[bˈotɪ]̈

mine.F
[mɐjˈa]

mine.M
[moj]

mine.PL
[mɐjˈɨ]

heat.F
[ʐɐˈra]

heat.M
[ʐar]

toad.F
[ʐˈabə]

toad.PL
[ʐˈabɪ]̈

basin.M
[taz]

basin.PL
[tɐzˈɨ]

bar.M
[bar]

bar.PL
[bˈarɪ]̈

slave.F
[rɐˈba]

slave.M
[rab]

slave.PL
[rɐˈbɨ]

owl.F 71 (9) 46 (10) 34 (9) 11 (10) 18 (8) 11 (9) 18 (8) 11 (10) 36 (10) 18 (8) 11 (8) 36 (10) 17 (8) 34 (9) 11 (10) 17 (8) 11 (9) 17 (8) 10 (10) 37 (9) 18 (7) 11 (9)
owl.PL 46 (8) 73 (10) 14 (10) 39 (10) 19 (7) 33 (11) 19 (7) 39 (10) 12 (8) 19 (7) 32 (10) 11 (8) 17 (7) 12 (8) 37 (9) 17 (7) 32 (11) 17 (7) 37 (9) 12 (9) 18 (7) 33 (11)
rose.F 25 (9) 16 (10) 74 (9) 48 (10) 23 (7) 7 (10) 23 (7) 17 (9) 27 (9) 23 (8) 7 (8) 28 (11) 16 (9) 33 (9) 6 (10) 22 (9) 15 (10) 15 (9) 9 (10) 35 (10) 22 (7) 15 (9)

rose.PL 3 (9) 42 (10) 49 (9) 73 (10) 24 (7) 30 (10) 23 (8) 43 (10) 4 (10) 23 (7) 29 (9) 6 (10) 16 (9) 8 (9) 32 (11) 22 (9) 37 (11) 16 (7) 36 (9) 13 (9) 23 (8) 38 (10)
cat.M 13 (7) 18 (6) 19 (7) 18 (6) 87 (6) 43 (7) 70 (6) 28 (7) 13 (7) 61 (6) 14 (7) 13 (7) 58 (7) 15 (7) 14 (8) 58 (7) 14 (7) 58 (6) 14 (7) 14 (8) 59 (7) 15 (8)
cat.PL 11 (9) 35 (11) 13 (9) 35 (11) 48 (7) 69 (11) 28 (8) 44 (11) 9 (10) 18 (8) 35 (11) 10 (10) 19 (8) 12 (9) 34 (10) 18 (8) 36 (11) 17 (8) 32 (10) 11 (9) 19 (8) 36 (11)
bot.M 11 (7) 22 (6) 24 (6) 24 (6) 72 (6) 19 (7) 89 (5) 50 (6) 12 (8) 65 (6) 12 (8) 11 (7) 54 (6) 12 (6) 12 (6) 56 (6) 13 (8) 62 (7) 19 (8) 13 (7) 56 (5) 13 (7)
bot.PL 10 (11) 41 (12) 20 (8) 42 (10) 31 (8) 39 (11) 50 (7) 71 (10) 9 (10) 23 (8) 31 (11) 8 (11) 13 (9) 10 (8) 33 (9) 16 (9) 32 (12) 22 (10) 39 (11) 11 (10) 16 (8) 32 (11)
mine.F 35 (10) 10 (10) 34 (8) 10 (10) 18 (7) 12 (9) 18 (7) 10 (10) 69 (11) 48 (7) 46 (9) 34 (11) 16 (8) 33 (9) 8 (9) 16 (8) 11 (9) 16 (8) 8 (10) 35 (11) 17 (7) 12 (9)

mine.M 12 (6) 20 (6) 20 (5) 20 (6) 63 (5) 13 (6) 63 (5) 20 (6) 43 (6) 89 (5) 43 (6) 13 (6) 57 (4) 14 (5) 14 (5) 57 (5) 13 (6) 57 (5) 14 (5) 13 (6) 57 (4) 13 (6)
mine.PL 11 (9) 37 (10) 13 (8) 37 (10) 19 (7) 34 (10) 19 (7) 37 (10) 45 (9) 50 (7) 69 (10) 10 (9) 17 (7) 11 (7) 35 (10) 17 (7) 34 (10) 17 (7) 35 (9) 11 (9) 18 (6) 35 (10)

heat.F 37 (11) 8 (11) 33 (10) 11 (11) 19 (8) 16 (10) 18 (8) 8 (10) 38 (11) 19 (8) 15 (10) 69 (11) 45 (8) 40 (11) 18 (11) 18 (8) 15 (10) 26 (9) 17 (12) 38 (9) 18 (8) 16 (10)
heat.M 14 (8) 18 (7) 19 (7) 20 (7) 63 (6) 16 (8) 62 (6) 20 (7) 16 (8) 62 (7) 15 (8) 43 (8) 82 (7) 23 (8) 23 (8) 57 (7) 14 (8) 66 (7) 23 (8) 15 (8) 57 (7) 15 (8)
toad.F 29 (11) 14 (12) 37 (10) 10 (12) 19 (11) 9 (10) 17 (10) 12 (13) 29 (12) 19 (9) 9 (10) 34 (13) 25 (11) 70 (11) 43 (12) 20 (10) 8 (10) 15 (10) 9 (12) 35 (12) 26 (10) 15 (11)
toad.P 9 (11) 40 (11) 15 (10) 37 (10) 19 (10) 29 (11) 18 (9) 39 (11) 10 (10) 19 (9) 30 (11) 15 (11) 26 (10) 48 (10) 71 (11) 21 (9) 29 (11) 17 (9) 38 (12) 16 (10) 27 (9) 36 (11)

basin.M 18 (7) 13 (6) 23 (6) 23 (6) 57 (6) 18 (7) 57 (6) 13 (6) 18 (7) 57 (6) 18 (7) 17 (8) 62 (7) 19 (7) 19 (8) 88 (6) 47 (7) 62 (7) 19 (8) 17 (8) 62 (7) 18 (8)
basin.PL 16 (10) 29 (9) 18 (7) 40 (8) 15 (7) 41 (9) 15 (7) 29 (9) 16 (10) 15 (7) 41 (10) 15 (10) 23 (8) 17 (9) 39 (11) 53 (7) 74 (9) 23 (8) 38 (11) 15 (10) 23 (7) 41 (10)

bar.M 16 (8) 12 (7) 15 (6) 14 (6) 55 (6) 15 (9) 63 (6) 21 (7) 18 (8) 57 (6) 17 (8) 24 (8) 70 (6) 20 (7) 20 (7) 63 (7) 15 (9) 87 (6) 48 (7) 18 (8) 64 (7) 17 (8)
bar.PL 15 (10) 32 (10) 11 (9) 33 (9) 13 (7) 34 (11) 23 (7) 41 (10) 16 (9) 15 (8) 36 (10) 22 (10) 33 (9) 19 (10) 42 (12) 24 (9) 34 (11) 52 (8) 75 (11) 16 (10) 27 (9) 37 (10)
slave.F 39 (10) 5 (10) 39 (9) 16 (10) 16 (7) 16 (8) 16 (7) 5 (10) 38 (10) 16 (7) 17 (9) 38 (10) 20 (8) 44 (11) 21 (11) 18 (8) 15 (9) 20 (8) 9 (11) 72 (10) 49 (8) 50 (8)

slave.M 16 (9) 16 (7) 24 (7) 24 (7) 59 (7) 16 (9) 60 (7) 17 (8) 16 (9) 59 (6) 15 (9) 15 (10) 59 (9) 25 (9) 25 (10) 57 (9) 13 (9) 60 (8) 17 (9) 43 (9) 84 (9) 43 (9)
slave.PL 14 (10) 31 (9) 18 (10) 41 (10) 17 (7) 39 (11) 17 (7) 31 (10) 14 (10) 17 (7) 40 (10) 13 (9) 21 (8) 23 (9) 46 (10) 19 (7) 37 (10) 22 (8) 36 (10) 46 (9) 50 (7) 72 (10)

68

Appendix 2: Source code of class dbm (MATLAB)
classdef dbm < handle

 properties (Constant)

 n_nodes_deep_levels = [config.getInstance.dbm_h1_nodes config.getInstance.dbm_h2_nodes]

 learning_rate = config.getInstance.dbm_learning_rate

 % equilibriums

 n_mean_field_echoes = config.getInstance.dbm_n_mean_field_echoes

 n_gibbs_echoes = config.getInstance.dbm_n_gibbs_echoes

 n_use_echoes = config.getInstance.dbm_use_echoes

 end

 properties (SetAccess = immutable)

 lang

 n_visible_nodes

 n_levels

 end

 properties (SetAccess = public)

 activities

 biases

 weights

 n_training_iterations

 end

 methods

 function obj = dbm(lang)

 obj.n_levels = size(dbm.n_nodes_deep_levels, 2) + 1;

 obj.lang = lang;

 obj.n_visible_nodes = lang.n_input_nodes;

 obj.activities = cell(obj.n_levels, 1);

 obj.biases = cell(obj.n_levels, 1);

 obj.weights = cell(obj.n_levels-1, 1);

 obj.n_training_iterations = 0;

69

 obj.reset;

 disp("DBM parameters:")

 disp("Number of hidden nodes in level h1: " + dbm.n_nodes_deep_levels(1))

 disp("Number of hidden nodes in level h2: " + dbm.n_nodes_deep_levels(2))

 disp("Learning rate: " + dbm.learning_rate)

 disp("Initialise weights with random small numbers: " ...

 + config.getInstance.dbm_initial_non_zero_weights)

 disp("n_mean_field_echoes: " + dbm.n_mean_field_echoes)

 disp("n_gibbs_echoes: " + dbm.n_gibbs_echoes)

 disp("use_echoes: " + dbm.n_use_echoes)

 end

 function load_trained_dbm(obj, n_instances)

 % 1st layer activities and biases

 obj.activities{1} = zeros(1, obj.n_visible_nodes, 'double');

 obj.biases{1} = zeros(1, obj.n_visible_nodes, 'double');

 % 1st layer weights

 dbm_filename = fullfile(config.getInstance.path_dbms, obj.lang.name ...

 + "_dbm_layer1_" + n_instances + "." + config.getInstance.dbm_format);

 obj.weights{1} = readmatrix(dbm_filename);

 for i = 2:obj.n_levels

 % i-th layer activities and biases

 obj.activities{i} = zeros(1, dbm.n_nodes_deep_levels(i-1), 'double');

 obj.biases{i} = zeros(1, dbm.n_nodes_deep_levels(i-1), 'double');

 % i-th layer weights

 if i < obj.n_levels

 dbm_filename = fullfile(config.getInstance.path_dbms, obj.lang.name ...

 + "_dbm_layer" + i + "_" + n_instances + "." ...

 + config.getInstance.dbm_format);

 obj.weights{i} = readmatrix(dbm_filename);

 end

 end

70

 % update training iterations counter

 obj.n_training_iterations = n_instances;

 end

 function reset(obj)

 obj.activities{1} = zeros(1, obj.n_visible_nodes, 'double');

 obj.biases{1} = zeros(1, obj.n_visible_nodes, 'double');

 if config.getInstance.dbm_initial_non_zero_weights

 obj.weights{1} = rand(obj.n_visible_nodes, dbm.n_nodes_deep_levels(1)) / 1000;

 else

 obj.weights{1} = zeros(obj.n_visible_nodes, dbm.n_nodes_deep_levels(1), 'double');

 end

 for i = 2:obj.n_levels

 obj.activities{i} = zeros(1, dbm.n_nodes_deep_levels(i-1), 'double');

 obj.biases{i} = zeros(1, dbm.n_nodes_deep_levels(i-1), 'double');

 if i < obj.n_levels

 obj.weights{i} = zeros(...

 dbm.n_nodes_deep_levels(i-1), dbm.n_nodes_deep_levels(i), 'double');

 end

 end

 obj.n_training_iterations = 0;

 end

 function learn(obj, train_batch_data)

 for batch = 1:size(train_batch_data, 3)

 for step = 1:size(train_batch_data, 1)

 % Populate input level and spread it up

 input_data = train_batch_data(step, :, batch);

 obj.spread_up_input(input_data, 0)

 % Hebbian learning phase

 obj.hebbian_learning(dbm.learning_rate)

71

 % Dreaming phase

 obj.resonate(1)

 % Anti-Hebbian learning phase

 obj.hebbian_learning(-dbm.learning_rate)

 end

 end

 % clean up activities

 obj.clean_up_activities

 % update training iterations

 obj.n_training_iterations = obj.n_training_iterations ...

 + size(train_batch_data, 3) * size(train_batch_data, 1);

 % save trained dbm to disk

 obj.save

 comment("TRAINED!!!!!!", "else")

 % clean big data from memory

 clear train_batch_data

 end

 function comprehend(obj, input_vector)

 if config.getInstance.dbm_compute_similarities

 comment("comprehending", 'header')

 end

 obj.use(input_vector, 1:obj.lang.n_input_nodes)

 end

 function produce(obj, input_vector)

 if config.getInstance.dbm_compute_similarities

 comment("producing", 'header')

 end

 obj.use(input_vector, 1:obj.lang.n_sound_nodes)

72

 end

 function similarity = measure_similarity_between_dbm_states(obj, a1, a2)

 similarity = zeros(1, 3);

 for level = 1:obj.n_levels

 if norm(a1{level}) ~= 0 && norm(a2{level}) ~= 0

 similarity(level) = dbm.cosine_similarity(a1{level}, a2{level});

 end

 end

 end

 function table_similarity = measure_phonological_similarity(obj, input_utterances, unclamped)

 % input: is a vector for every utterance

 % output: create 3 tables with activities {2}, {3},

 % and a combination of them (after spreading)

 table_similarity{1} = zeros(size(input_utterances, 1), size(input_utterances, 1));

 table_similarity{2} = zeros(size(input_utterances, 1), size(input_utterances, 1));

 table_similarity{3} = zeros(size(input_utterances, 1), size(input_utterances, 1));

 second_levels_per_utterance = zeros(size(input_utterances, 1), ...

 obj.n_nodes_deep_levels(1));

 third_levels_per_utterance = zeros(size(input_utterances, 1), ...

 obj.n_nodes_deep_levels(2));

 both_levels_per_utterance = zeros(size(input_utterances, 1), ...

 obj.n_nodes_deep_levels(1) + obj.n_nodes_deep_levels(2));

 % spread and remember the hidden levels

 for i=1:size(input_utterances, 1)

 input_vector = input_utterances(i, :);

 obj.use(input_vector, unclamped{i,1})

 second_levels_per_utterance(i,:) = obj.activities{2};

 third_levels_per_utterance(i,:) = obj.activities{3};

 both_levels_per_utterance(i,:) = [obj.activities{2} obj.activities{3}];

 end

73

 % compare activities{2} vectors between each other for similarity

 for i=1:size(input_utterances, 1)

 for j=1:size(input_utterances, 1)

 v1 = second_levels_per_utterance(i,:);

 v2 = second_levels_per_utterance(j,:);

 table_similarity{1}(i, j) = dbm.cosine_similarity(v1, v2);

 v1 = third_levels_per_utterance(i,:);

 v2 = third_levels_per_utterance(j,:);

 table_similarity{2}(i, j) = dbm.cosine_similarity(v1, v2);

 v1 = both_levels_per_utterance(i,:);

 v2 = both_levels_per_utterance(j,:);

 table_similarity{3}(i, j) = dbm.cosine_similarity(v1, v2);

 end

 end

 end

 function io_similarity = measure_io_similarity(obj, ...

 input_utterances, full_utterances, unclamped)

 % create similarity table with tested output in rows and all

 % the inputs in columns

 io_similarity = zeros(...

 size(input_utterances, 1), size(input_utterances, 1));

 for i=1:size(input_utterances, 1)

 input_vector = input_utterances(i, :);

 obj.use(input_vector, unclamped{i,1})

 for j=1:size(input_utterances, 1)

 io_similarity(i, j) = dbm.cosine_similarity(...

 obj.activities{1}, full_utterances(j, :));

 end

 end

 end

 function draw_trained(obj)

 if obj.n_visible_nodes == lang1.n_input_nodes

74

 draw.dbm(obj.activities, obj.weights, draw.lang1_trained_dbm);

 elseif obj.n_visible_nodes == lang2.n_input_nodes

 draw.dbm(obj.activities, obj.weights, draw.lang2_trained_dbm);

 else

 error("Attempting to draw DBM for unknown language with " ...

 + obj.n_visible_nodes + " input nodes")

 end

 end

 function draw(obj)

 if obj.n_visible_nodes == lang1.n_input_nodes

 draw.dbm(obj.activities, obj.weights, draw.lang1_dbm);

 elseif obj.n_visible_nodes == lang2.n_input_nodes

 draw.dbm(obj.activities, obj.weights, draw.lang2_dbm);

 else

 error("Attempting to draw DBM for unknown language with " ...

 + obj.n_visible_nodes + " input nodes")

 end

 end

 end

 methods (Access = private)

 function spread_up_input(obj, input_data, stochastic)

 if config.getInstance.dbm_compute_similarities

 comment("learning spread up similarity", 'header')

 end

 % populate input level

 obj.activities{1} = input_data;

 % zero deep levels

 for level = 2:obj.n_levels

 obj.activities{level} = zeros(1, size(obj.activities{level}, 2), "double");

 end

75

 % spread up

 for e = 1:dbm.n_mean_field_echoes

 if config.getInstance.dbm_compute_similarities

 prev_activities = obj.activities;

 end

 % do the spreading

 for level = 2:obj.n_levels

 obj.spread_to_level(level, stochastic);

 end

 % measure similarity to know about the equilibrium state

 if config.getInstance.dbm_compute_similarities

 similarity = obj.measure_similarity_between_dbm_states(...

 prev_activities, obj.activities);

 comment("learning spread up similarity, step " + e + ": " ...

 + sprintf('%f %f %f', similarity(:)), "else")

 end

 end

 if config.getInstance.dbm_compute_similarities

 disp(obj.activities)

 end

 end

 function hebbian_learning(obj, learning_rate)

 for level = 1:obj.n_levels

 obj.biases{level} = obj.biases{level} + ...

 learning_rate * obj.activities{level};

 end

 for level = 1:obj.n_levels-1

 obj.weights{level} = obj.weights{level} + ...

 learning_rate * obj.activities{level}.' * obj.activities{level+1};

 end

 end

76

 function resonate(obj, stochastic)

 if config.getInstance.dbm_compute_similarities

 comment("resonating", 'header')

 end

 for e = 1:dbm.n_gibbs_echoes

 if config.getInstance.dbm_compute_similarities

 prev_activities = obj.activities;

 end

 % do the spreading

 obj.spread_to_level1(1:obj.lang.n_input_nodes);

 obj.spread_to_level(obj.n_levels, stochastic);

 for level = 2:obj.n_levels-1

 obj.spread_to_level(level, stochastic);

 end

 % measure similarity to know about the equilibrium state

 if config.getInstance.dbm_compute_similarities

 similarity = obj.measure_similarity_between_dbm_states(...

 prev_activities, obj.activities);

 comment("learning resonate similarity, step " + e + ": " ...

 + sprintf('%f %f %f', similarity(:)), "else")

 end

 end

 end

 function spread_to_level (obj, level, stochastic)

 if level == 1

 error("call spread_to_level1 to spread to level 1")

 elseif level == obj.n_levels

 obj.activities{level} = ...

 obj.activities{level-1} * obj.weights{level-1} + obj.biases{level};

 else

 obj.activities{level} = ...

 obj.activities{level+1} * obj.weights{level}.' + obj.biases{level} ...

 + obj.activities{level-1} * obj.weights{level-1};

77

 end

 obj.activities{level} = dbm.sigmoid(obj.activities{level});

 if stochastic

 obj.activities{level} = binornd(1, obj.activities{level});

 end

 end

 function spread_to_level1 (obj, unclamped)

 activities_1 = obj.activities{2} * obj.weights{1}.' + obj.biases{1};

 obj.activities{1}(unclamped) = activities_1(unclamped);

 end

 function clean_up_activities(obj)

 obj.activities{1} = zeros(1, obj.n_visible_nodes, 'double');

 for i = 2:obj.n_levels

 obj.activities{i} = zeros(1, dbm.n_nodes_deep_levels(i-1), 'double');

 end

 end

 function use(obj, input_vector, unclamped)

 % populate input level

 obj.activities{1} = input_vector;

 % zero deep levels

 for level = 2:obj.n_levels

 obj.activities{level} = zeros(1, size(obj.activities{level}, 2), "double");

 end

 % spread up

 for e = 1:dbm.n_use_echoes

 if config.getInstance.dbm_compute_similarities

 prev_activities = obj.activities;

 end

 % spread to hidden levels

78

 for level = 2:obj.n_levels

 obj.spread_to_level(level, 0);

 end

 % spread to visible level

 obj.spread_to_level1(unclamped);

 % measure similarity to know about the equilibrium state

 if config.getInstance.dbm_compute_similarities

 similarity = obj.measure_similarity_between_dbm_states(...

 prev_activities, obj.activities);

 comment("using spread up similarity, step " + e + ": " ...

 + sprintf('%f %f %f', similarity(:)), "else")

 end

 end

 end

 function save(obj)

 for i = 1:obj.n_levels-1

 filename = fullfile(config.getInstance.path_dbms, obj.lang.name ...

 + "_dbm_layer" + i + "_" + obj.n_training_iterations ...

 + "." + config.getInstance.dbm_format);

 writematrix(obj.weights{i}, filename)

 end

 end

 end

 methods (Static)

 function s = sigmoid(z)

 s = 1.0 ./ (1.0 + exp(-z));

 end

 function similarity = cosine_similarity (v1, v2)

 similarity = 1 - pdist2(v1, v2, 'cosine');

 end

 end

end

79

Appendix 3: Source code of class measure (MATLAB)
classdef measure

 properties(Constant)

 lex = [

 utterance("sova", lang2_sound.SOVA, lang2_meaning.SOVA)

 utterance("roza", lang2_sound.ROZA, lang2_meaning.ROZA)

 utterance("kot", lang2_sound.KOT, lang2_meaning.KOT)

 utterance("bot", lang2_sound.BOT, lang2_meaning.BOT)

 utterance("moj", lang2_sound.MOJ, lang2_meaning.MOJ)

 utterance("zhar", lang2_sound.ZHAR, lang2_meaning.ZHAR)

 utterance("zhaba", lang2_sound.ZHABA, lang2_meaning.ZHABA)

 utterance("taz", lang2_sound.TAZ, lang2_meaning.TAZ)

 utterance("bar", lang2_sound.BAR, lang2_meaning.BAR)

 utterance("rab", lang2_sound.RAB, lang2_meaning.RAB)

]

 gen = [

 utterance("roza", lang2_sound.ROZA, lang2_meaning.ROZA)

 utterance("kot", lang2_sound.KOT, lang2_meaning.KOT)

 utterance("boty", lang2_sound.BOTY, lang2_meaning.BOTY)

]

 end

 methods (Static)

 function similarities(lang, samples_per_utterance, n_learners)

 % 1) generates sample_per_utterance samples for language lang

 % 2) trains DBM on this set n_learners times

 % 3) after every training, uses it for every sound and meaning and measures similarity

 % between

 % - 1st hidden levels

 % - 2nd hidden levels

 % - both levels

 dataset = data_set(lang, samples_per_utterance);

80

 % PROFICIENCY

 io_comprehension_similarity = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 io_production_similarity_unclamped = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 io_production_similarity_clamped = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 % PHONOLOGY WORDS

 similarity_sounds{1} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_sounds{2} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_sounds{3} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_meanings_clamped{1} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_meanings_clamped{2} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_meanings_clamped{3} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_meanings_unclamped{1} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_meanings_unclamped{2} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_meanings_unclamped{3} = zeros(lang.n_utterances, lang.n_utterances, n_learners);

 similarity_faithfullness{1} = zeros(lang.n_utterances*2, lang.n_utterances*2, n_learners);

 similarity_faithfullness{2} = zeros(lang.n_utterances*2, lang.n_utterances*2, n_learners);

 similarity_faithfullness{3} = zeros(lang.n_utterances*2, lang.n_utterances*2, n_learners);

 % PHONOLOGY SOUNDS-PHONEMES

 similarity_first_vowels{1} = zeros(lang2_sound.n_vowels, lang2_sound.n_vowels, n_learners);

 similarity_first_vowels{2} = zeros(lang2_sound.n_vowels, lang2_sound.n_vowels, n_learners);

 similarity_first_vowels{3} = zeros(lang2_sound.n_vowels, lang2_sound.n_vowels, n_learners);

 similarity_second_vowels{1} = zeros(lang2_sound.n_vowels, lang2_sound.n_vowels, n_learners);

 similarity_second_vowels{2} = zeros(lang2_sound.n_vowels, lang2_sound.n_vowels, n_learners);

 similarity_second_vowels{3} = zeros(lang2_sound.n_vowels, lang2_sound.n_vowels, n_learners);

 similarity_three_sounds{1} = zeros(3 * size(measure.lex, 1), 3 * size(measure.lex, 1), ...

 n_learners);

 similarity_three_sounds{2} = zeros(3 * size(measure.lex, 1), 3 * size(measure.lex, 1), ...

 n_learners);

81

 similarity_three_sounds{3} = zeros(3 * size(measure.lex, 1), 3 * size(measure.lex, 1), ...

 n_learners);

 similarity_lex = cell(size(measure.lex, 1), 3);

 for j=1:size(measure.lex, 1)

 similarity_lex{j, 1} = zeros(4, 4, n_learners);

 similarity_lex{j, 2} = zeros(4, 4, n_learners);

 similarity_lex{j, 3} = zeros(4, 4, n_learners);

 end

 similarity_gen = cell(size(measure.gen, 1), 3);

 for j=1:size(measure.gen, 1)

 similarity_gen{j, 1} = zeros(6, 6, n_learners);

 similarity_gen{j, 2} = zeros(6, 6, n_learners);

 similarity_gen{j, 3} = zeros(6, 6, n_learners);

 end

 for i=1:n_learners

 comment(lang.name + ": generating new data for learner " ...

 + i + " of " + n_learners, 'header');

 data = dataset.generate_observations;

 comment("Training DBM", 'else');

 dbm_instance = dbm(lang);

 dbm_instance.learn(data)

 full_vectors = measure.create_word_input(lang);

 sound_vectors = measure.create_sound_input(lang);

 meaning_vectors = measure.create_meaning_input(lang);

 unclamped_all = measure.unclamped(lang.n_input_nodes, lang.n_utterances);

 unclamped_sound = measure.unclamped(lang.n_sound_nodes, lang.n_utterances);

 % PROFICIENCY

 comment("Measure input-output comprehension similarity for learner " ...

 + i + " of " + n_learners, 'else')

 io_comprehension_similarity(:,:,i) = dbm_instance.measure_io_similarity(...

82

 sound_vectors, full_vectors, unclamped_all);

 comment("Measure input-output production similarity (meaning unclamped) for learner " ...

 + i + " of " + n_learners, 'else')

 io_production_similarity_unclamped(:,:,i) = dbm_instance.measure_io_similarity(...

 meaning_vectors, full_vectors, unclamped_all);

 comment("Measure input-output production similarity (meaning clamped) for learner " ...

 + i + " of " + n_learners, 'else')

 io_production_similarity_clamped(:,:,i) = dbm_instance.measure_io_similarity(...

 meaning_vectors, full_vectors, unclamped_sound);

 % PHONOLOGY

 comment("Measure similarity comprehension for learner " ...

 + i + " of " + n_learners, 'else')

 similarity = dbm_instance.measure_phonological_similarity(sound_vectors, unclamped_all);

 similarity_sounds{1}(:,:,i) = similarity{1};

 similarity_sounds{2}(:,:,i) = similarity{2};

 similarity_sounds{3}(:,:,i) = similarity{3};

 comment("Measure similarity production (meaning clamped) for learner " ...

 + i + " of " + n_learners, 'else')

 similarity = dbm_instance.measure_phonological_similarity(meaning_vectors, ...

 unclamped_sound);

 similarity_meanings_clamped{1}(:,:,i) = similarity{1};

 similarity_meanings_clamped{2}(:,:,i) = similarity{2};

 similarity_meanings_clamped{3}(:,:,i) = similarity{3};

 comment("Measure similarity production (meaning UNclamped) for learner " ...

 + i + " of " + n_learners, 'else')

 similarity = dbm_instance.measure_phonological_similarity(meaning_vectors, ...

 unclamped_all);

 similarity_meanings_unclamped{1}(:,:,i) = similarity{1};

 similarity_meanings_unclamped{2}(:,:,i) = similarity{2};

 similarity_meanings_unclamped{3}(:,:,i) = similarity{3};

83

 comment("Measure similarity comprehension-production (faithfullness) for learner " ...

 + i + " of " + n_learners, 'else')

 similarity = dbm_instance.measure_phonological_similarity(...

 [sound_vectors; meaning_vectors], ...

 [unclamped_all; unclamped_sound]);

 similarity_faithfullness{1}(:,:,i) = similarity{1};

 similarity_faithfullness{2}(:,:,i) = similarity{2};

 similarity_faithfullness{3}(:,:,i) = similarity{3};

 % PHONOLOGY SOUNDS-PHONEMES

 if strcmp(lang.name, "lang2")

 comment("Measure similarity first vowel for learner " ...

 + i + " of " + n_learners, 'else')

 input_vectors = measure.create_first_vowel_input;

 similarity = dbm_instance.measure_phonological_similarity(...

 input_vectors, measure.unclamped(lang.n_input_nodes, lang2_sound.n_vowels));

 similarity_first_vowels{1}(:,:,i) = similarity{1};

 similarity_first_vowels{2}(:,:,i) = similarity{2};

 similarity_first_vowels{3}(:,:,i) = similarity{3};

 comment("Measure similarity second vowel for learner " ...

 + i + " of " + n_learners, 'else')

 input_vectors = measure.create_second_vowel_input;

 similarity = dbm_instance.measure_phonological_similarity(...

 input_vectors, measure.unclamped(lang.n_input_nodes, lang2_sound.n_vowels));

 similarity_second_vowels{1}(:,:,i) = similarity{1};

 similarity_second_vowels{2}(:,:,i) = similarity{2};

 similarity_second_vowels{3}(:,:,i) = similarity{3};

 comment("Measure similarity three first sounds for learner " ...

 + i + " of " + n_learners, 'else')

 input_vectors = measure.create_three_sounds_input;

 similarity = dbm_instance.measure_phonological_similarity(...

 input_vectors, measure.unclamped(lang.n_input_nodes, 3 * size(measure.lex, 1)));

 similarity_three_sounds{1}(:,:,i) = similarity{1};

 similarity_three_sounds{2}(:,:,i) = similarity{2};

84

 similarity_three_sounds{3}(:,:,i) = similarity{3};

 comment("Measure lexical mapping for learner " ...

 + i + " of " + n_learners, 'else');

 for j=1:size(measure.lex, 1)

 input_vectors = measure.create_lex_input(j);

 similarity = dbm_instance.measure_phonological_similarity(...

 input_vectors, measure.unclamped_lex);

 similarity_lex{j, 1}(:,:,i) = similarity{1};

 similarity_lex{j, 2}(:,:,i) = similarity{2};

 similarity_lex{j, 3}(:,:,i) = similarity{3};

 end

 comment("Measure morphosyntactic mapping for learner " ...

 + i + " of " + n_learners, 'else');

 for j=1:size(measure.gen, 1)

 input_vectors = measure.create_gen_input(j);

 similarity = dbm_instance.measure_phonological_similarity(...

 input_vectors, measure.unclamped_gen);

 similarity_gen{j, 1}(:,:,i) = similarity{1};

 similarity_gen{j, 2}(:,:,i) = similarity{2};

 similarity_gen{j, 3}(:,:,i) = similarity{3};

 end

 end

 end

 % average over all learners

 % PROFICIENCY

 table_io_comprehension_similarity = measure.average_input_output(...

 io_comprehension_similarity);

 table_io_production_similarity_clamped = measure.average_input_output(...

 io_production_similarity_clamped);

 table_io_production_similarity_unclamped = measure.average_input_output(...

 io_production_similarity_unclamped);

 % PHONOLOGY WORDS

85

 table_similarity_sounds = measure.average(similarity_sounds);

 table_similarity_meanings_clamped = measure.average(similarity_meanings_clamped);

 table_similarity_meanings_unclamped = measure.average(similarity_meanings_unclamped);

 table_similarity_faithfullness = measure.average(similarity_faithfullness);

 % PHONOLOGY SOUNDS-PHONEMES

 if strcmp(lang.name, "lang2")

 table_similarity_first_vowels = measure.average(similarity_first_vowels);

 table_similarity_second_vowels = measure.average(similarity_second_vowels);

 table_similarity_three_sounds = measure.average(similarity_three_sounds);

 table_similarity_lex = cell(size(measure.lex, 1), 1); %cell array of 10 cell arrays

 for j=1:size(measure.lex, 1)

 s{1} = similarity_lex{j, 1};

 s{2} = similarity_lex{j, 2};

 s{3} = similarity_lex{j, 3};

 table_similarity_lex{j} = measure.average(s); % cell array of 6 elements

 end

 table_similarity_gen = cell(size(measure.gen, 1), 1); %cell array of 3 cell arrays

 for j=1:size(measure.gen, 1)

 s{1} = similarity_gen{j, 1};

 s{2} = similarity_gen{j, 2};

 s{3} = similarity_gen{j, 3};

 table_similarity_gen{j} = measure.average(s); % cell array of 6 elements

 end

 end

 % create tables with column and row names

 utterance_names_comp = strings(1, lang.n_utterances);

 for i=1:lang.n_utterances

 utterance_names_comp(1, i) = char("[" + lang.utterances(i).name + "]");

 end

 utterance_names_comp = cellstr(utterance_names_comp);

 utterance_names_prod = strings(1, lang.n_utterances);

 for i=1:lang.n_utterances

86

 utterance_names_prod(1, i) = char("<" + lang.utterances(i).name+ ">");

 end

 utterance_names_prod = cellstr(utterance_names_prod);

 % PROFICIENCY

 table_io_comprehension_similarity = measure.create_tables_input_output(...

 table_io_comprehension_similarity, utterance_names_comp);

 table_io_production_similarity_clamped = measure.create_tables_input_output(...

 table_io_production_similarity_clamped, utterance_names_prod);

 table_io_production_similarity_unclamped = measure.create_tables_input_output(...

 table_io_production_similarity_unclamped, utterance_names_prod);

 % PHONOLOGY WORDS

 table_similarity_sounds = measure.create_tables(...

 table_similarity_sounds, utterance_names_comp);

 table_similarity_meanings_clamped = measure.create_tables(...

 table_similarity_meanings_clamped, utterance_names_prod);

 table_similarity_meanings_unclamped = measure.create_tables(...

 table_similarity_meanings_unclamped, utterance_names_prod);

 table_similarity_faithfullness = measure.create_tables(...

 table_similarity_faithfullness, [utterance_names_comp utterance_names_prod]);

 % PHONOLOGY SOUNDS-PHONEMES

 if strcmp(lang.name, "lang2")

 % first and second vowels

 vowel_names = strings(1, lang2_sound.n_vowels);

 for i=1:lang2_sound.n_vowels

 vowel_names(1, i) = char(lang2_sound.vowels(i));

 end

 vowel_names = cellstr(vowel_names);

 table_similarity_first_vowels = measure.create_tables(...

 table_similarity_first_vowels, vowel_names);

 table_similarity_second_vowels = measure.create_tables(...

 table_similarity_second_vowels, vowel_names);

 % three sounds

87

 three_sounds_names = strings(1, 3 * size(measure.lex, 1));

 j = 1;

 for i=1:size(measure.lex, 1)

 c1 = lang2_sound.cons(measure.lex(i).sound.c1_index);

 c2 = lang2_sound.cons(measure.lex(i).sound.c2_index);

 three_sounds_names(1, j) = char("[" + c1 + lang2_sound.vowels(1) + c2 + "]");

 j = j + 1;

 three_sounds_names(1, j) = char("[" + c1 + lang2_sound.vowels(2) + c2 + "]");

 j = j + 1;

 three_sounds_names(1, j) = char("[" + c1 + lang2_sound.vowels(3) + c2 + "]");

 j = j + 1;

 end

 three_sounds_names = cellstr(three_sounds_names);

 table_similarity_three_sounds = measure.create_tables(...

 table_similarity_three_sounds, three_sounds_names);

 % lexical

 table_similarity_lex = measure.create_lex_table(table_similarity_lex);

 % morphosyntactic

 table_similarity_gen = measure.create_gen_table(table_similarity_gen);

 end

 % write similarity matrices to files

 % PROFICIENCY

 measure.write_to_file_input_output(table_io_comprehension_similarity, ...

 "io_comprehension", lang, samples_per_utterance, n_learners)

 measure.write_to_file_input_output(table_io_production_similarity_clamped, ...

 "io_production_clamped", lang, samples_per_utterance, n_learners)

 measure.write_to_file_input_output(table_io_production_similarity_unclamped, ...

 "io_production_unclamped", lang, samples_per_utterance, n_learners)

88

 % PHONOLOGY WORDS

 measure.write_to_file(table_similarity_sounds, ...

 "comprehension", lang, samples_per_utterance, n_learners)

 measure.write_to_file(table_similarity_meanings_clamped, ...

 "production_meaning_clamped", lang, samples_per_utterance, n_learners)

 measure.write_to_file(table_similarity_meanings_unclamped, ...

 "production_meaning_unclamped", lang, samples_per_utterance, n_learners)

 measure.write_to_file(table_similarity_faithfullness, ...

 "faithfullness", lang, samples_per_utterance, n_learners)

 % PHONOLOGY SOUNDS-PHONEMES

 if strcmp(lang.name, "lang2")

 measure.write_to_file(table_similarity_first_vowels, ...

 "first_vowels", lang, samples_per_utterance, n_learners)

 measure.write_to_file(table_similarity_second_vowels, ...

 "second_vowels", lang, samples_per_utterance, n_learners)

 measure.write_to_file(table_similarity_three_sounds, ...

 "three_sounds", lang, samples_per_utterance, n_learners)

 measure.write_to_file(table_similarity_lex, ...

 "lexical_mapping", lang, samples_per_utterance, n_learners)

 measure.write_to_file(table_similarity_gen, ...

 "gender_number_mapping", lang, samples_per_utterance, n_learners)

 end

 end

 end

 methods (Static, Access=private)

 function input_vectors = create_word_input(lang)

 input_vectors = zeros(lang.n_utterances, lang.n_input_nodes);

 for j=1:lang.n_utterances

 input_vectors(j, :) = [lang.utterances(j).sound.create_input_vector ...

 lang.utterances(j).meaning.create_input_vector];

 end

 end

89

 function input_vectors = create_sound_input(lang)

 input_vectors = zeros(lang.n_utterances, lang.n_input_nodes);

 for j=1:lang.n_utterances

 input_vectors(j, :) = [lang.utterances(j).sound.create_input_vector ...

 zeros(1, lang.utterances(j).meaning.n_semantic_nodes)];

 end

 end

 function input_vectors = create_meaning_input(lang)

 input_vectors = zeros(lang.n_utterances, lang.n_input_nodes);

 for j=1:lang.n_utterances

 input_vectors(j, :) = [zeros(1, lang.utterances(j).sound.n_auditory_nodes) ...

 lang.utterances(j).meaning.create_input_vector];

 end

 end

 function input_vectors = create_first_vowel_input()

 input_vectors = zeros(lang2_sound.n_vowels, lang2.n_input_nodes);

 c1_vector = lang2_sound.create_zero_consonant_input_vector;

 c2_vector = lang2_sound.create_zero_consonant_input_vector;

 v2_vector = vowel.create_zero_input_vector;

 for j=1:lang2_sound.n_vowels

 v1_vector = vowel.create_input_vector(lang2_sound.f1_erbs(j), lang2_sound.f2_erbs(j));

 input_vectors(j, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 end

 end

 function input_vectors = create_second_vowel_input()

 input_vectors = zeros(lang2_sound.n_vowels, lang2.n_input_nodes);

 c1_vector = lang2_sound.create_zero_consonant_input_vector;

 c2_vector = lang2_sound.create_zero_consonant_input_vector;

 v1_vector = vowel.create_zero_input_vector;

90

 for j=1:lang2_sound.n_vowels

 v2_vector = vowel.create_input_vector(lang2_sound.f1_erbs(j), lang2_sound.f2_erbs(j));

 input_vectors(j, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 end

 end

 function input_vectors = create_three_sounds_input()

 n_comparisons = 3 * size(measure.lex, 1);

 input_vectors = zeros(n_comparisons, lang2.n_input_nodes);

 i = 1;

 for j=1:size(measure.lex, 1)

 c1_vector = lang2_sound.create_consonant_input_vector(measure.lex(j).sound.c1_index);

 c2_vector = lang2_sound.create_consonant_input_vector(measure.lex(j).sound.c2_index);

 v2_vector = vowel.create_zero_input_vector;

 % [a]

 v1_vector = vowel.create_input_vector(lang2_sound.f1_erbs(1), lang2_sound.f2_erbs(1));

 input_vectors(i, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 i = i + 1;

 % [o]

 v1_vector = vowel.create_input_vector(lang2_sound.f1_erbs(2), lang2_sound.f2_erbs(2));

 input_vectors(i, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 i = i + 1;

 % [ɐ]

 v1_vector = vowel.create_input_vector(lang2_sound.f1_erbs(3), lang2_sound.f2_erbs(3));

 input_vectors(i, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 i = i + 1;

 end

91

 end

 function input_vectors = create_lex_input(i)

 input_vectors = zeros(4, lang2.n_input_nodes);

 % sounds

 c1_vector = lang2_sound.create_consonant_input_vector(measure.lex(i).sound.c1_index);

 c2_vector = lang2_sound.create_consonant_input_vector(measure.lex(i).sound.c2_index);

 v2_vector = vowel.create_zero_input_vector;

 meaning_vector = measure.lex(i).meaning.create_lex_input_vector;

 % input vector with lexical meaning

 input_vectors(1, :) = [...

 lang2_sound.create_zero_consonant_input_vector ...

 vowel.create_zero_input_vector ...

 lang2_sound.create_zero_consonant_input_vector ...

 vowel.create_zero_input_vector ...

 meaning_vector];

 % [a]

 v1_vector = vowel.create_input_vector(lang2_sound.f1_erbs(1), lang2_sound.f2_erbs(1));

 input_vectors(2, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 % [o]

 v1_vector = vowel.create_input_vector(lang2_sound.f1_erbs(2), lang2_sound.f2_erbs(2));

 input_vectors(3, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 % [ɐ]

 v1_vector = vowel.create_input_vector(lang2_sound.f1_erbs(3), lang2_sound.f2_erbs(3));

 input_vectors(4, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 end

 function input_vectors = create_gen_input(i)

92

 input_vectors = zeros(4, lang2.n_input_nodes);

 % sounds

 c1_vector = lang2_sound.create_zero_consonant_input_vector;

 v1_vector = vowel.create_zero_input_vector;

 c2_vector = lang2_sound.create_zero_consonant_input_vector;

 v2_vector = vowel.create_zero_input_vector;

 meaning_vector = measure.gen(i).meaning.create_gen_input_vector;

 % input vector with morphosyntactic meaning

 input_vectors(1, :) = [c1_vector v1_vector c2_vector v2_vector meaning_vector];

 % [a]

 v2_vector = vowel.create_input_vector(lang2_sound.f1_erbs(1), lang2_sound.f2_erbs(1));

 input_vectors(2, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 % [ɨ]

 v2_vector = vowel.create_input_vector(lang2_sound.f1_erbs(4), lang2_sound.f2_erbs(4));

 input_vectors(3, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 % [ə]

 v2_vector = vowel.create_input_vector(lang2_sound.f1_erbs(5), lang2_sound.f2_erbs(5));

 input_vectors(4, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 % [ɪ]

 v2_vector = vowel.create_input_vector(lang2_sound.f1_erbs(6), lang2_sound.f2_erbs(6));

 input_vectors(5, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 % [NONE]

 v2_vector = vowel.create_input_vector(0, 0);

 input_vectors(6, :) = [c1_vector v1_vector c2_vector v2_vector ...

 zeros(1, lang2_meaning.n_semantic_nodes)];

 end

93

 function table_similarity = average(similarity)

 m{1} = round(mean(similarity{1}, 3)*100);

 m{2} = round(mean(similarity{2}, 3)*100);

 m{3} = round(mean(similarity{3}, 3)*100);

 sd{1} = round(std(similarity{1}, 0, 3)*100);

 sd{2} = round(std(similarity{2}, 0, 3)*100);

 sd{3} = round(std(similarity{3}, 0, 3)*100);

 table_similarity{1} = string(m{1}) + " (" + string(sd{1}) + ")";

 table_similarity{2} = string(m{2}) + " (" + string(sd{2}) + ")";

 table_similarity{3} = string(m{3}) + " (" + string(sd{3}) + ")";

 table_similarity{4} = string(m{1});

 table_similarity{5} = string(m{2});

 table_similarity{6} = string(m{3});

 end

 function table_similarity = average_input_output(similarity)

 m = round(mean(similarity, 3)*100);

 sd = round(std(similarity, 0, 3)*100);

 table_similarity{1} = string(m) + " (" + string(sd) + ")";

 table_similarity{2} = string(m);

 end

 function result_table_similarity = create_tables(table_similarity, headers)

 result_table_similarity = cell(6, 1);

 for i=1:6

 result_table_similarity{i} = array2table(table_similarity{i});

 result_table_similarity{i}.Properties.RowNames = headers;

 result_table_similarity{i}.Properties.VariableNames = headers;

 result_table_similarity{i}.Properties.DimensionNames{1} = ' ';

 end

 end

94

 function result_table_similarity = create_tables_input_output(table_similarity, headers)

 result_table_similarity = cell(2, 1);

 for i=1:2

 result_table_similarity{i} = array2table(table_similarity{i});

 result_table_similarity{i}.Properties.RowNames = headers;

 result_table_similarity{i}.Properties.VariableNames = headers;

 result_table_similarity{i}.Properties.DimensionNames{1} = ' ';

 end

 end

 function result_table_similarity_lex = create_lex_table(table_similarity_lex)

 % table_similarity_lex: cell array of 10 cell arrays of 6 elements

 % for output, we want to return one cell array of 6 elements

 result_table_similarity_lex = cell(6, 1);

 for i=1:6

 lex_matrix = strings(size(measure.lex, 1), 3);

 row_names = strings(size(measure.lex, 1), 1);

 for j=1:size(measure.lex, 1)

 lex_matrix(j, :) = table_similarity_lex{j}{i}(1, 2:4);

 row_names(j) = ...

 "<" + measure.lex(j).meaning.lex(measure.lex(j).meaning.lex_index) + ">";

 end

 result_table_similarity_lex{i} = array2table(lex_matrix);

 result_table_similarity_lex{i}.Properties.RowNames = row_names;

 result_table_similarity_lex{i}.Properties.VariableNames = ["a", "o", "ɐ"];

 result_table_similarity_lex{i}.Properties.DimensionNames{1} = ' ';

 end

 end

 function result_table_similarity_gen = create_gen_table(table_similarity_gen)

 % table_similarity_lex: cell array of 10 cell arrays of 6 elements

 % for output, we want to return one cell array of 6 elements

 result_table_similarity_gen = cell(6, 1);

 for i=1:6

95

 gen_matrix = strings(size(measure.gen, 1), 5);

 row_names = strings(size(measure.gen, 1), 1);

 for j=1:size(measure.gen, 1)

 gen_matrix(j, :) = table_similarity_gen{j}{i}(1, 2:6);

 row_names(j) = measure.gen(j).meaning.gen(measure.gen(j).meaning.gen_index);

 end

 result_table_similarity_gen{i} = array2table(gen_matrix);

 result_table_similarity_gen{i}.Properties.RowNames = row_names;

 result_table_similarity_gen{i}.Properties.VariableNames = ["a", "ɨ", "ə", "ɪ̈" "NONE"];

 result_table_similarity_gen{i}.Properties.DimensionNames{1} = ' ';

 end

 end

 function write_to_file(table_similarity, name, lang, n_samples, n_learners)

 f_common = fullfile(config.getInstance.path_measures, lang.name ...

 + "_" + name + "_similarities_" ...

 + n_samples + "samples_" ...

 + n_learners + "learners_h");

 filename{1} = strcat(f_common, "_with_std_1.csv");

 filename{2} = strcat(f_common, "_with_std_2.csv");

 filename{3} = strcat(f_common, "_with_std_12.csv");

 filename{4} = strcat(f_common, "_without_std_1.csv");

 filename{5} = strcat(f_common, "_without_std_2.csv");

 filename{6} = strcat(f_common, "_without_std_12.csv");

 writetable(table_similarity{1}, filename{1}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 writetable(table_similarity{2}, filename{2}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 writetable(table_similarity{3}, filename{3}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 writetable(table_similarity{4}, filename{4}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 writetable(table_similarity{5}, filename{5}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 writetable(table_similarity{6}, filename{6}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 end

 function write_to_file_input_output(table_similarity, name, lang, n_samples, n_learners)

 f_common = fullfile(config.getInstance.path_measures, lang.name ...

96

 + "_" + name + "_similarities_" ...

 + n_samples + "samples_" ...

 + n_learners + "learners_h");

 filename{1} = strcat(f_common, "_with_std.csv");

 filename{2} = strcat(f_common, "_without_std.csv");

 writetable(table_similarity{1}, filename{1}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 writetable(table_similarity{2}, filename{2}, 'WriteRowNames', true, 'Encoding', 'UTF-8')

 end

 function unclamped_indeces = unclamped(n_nodes, n_comparisons)

 unclamped_indeces = repmat(1:n_nodes, n_comparisons, 1);

 unclamped_indeces = mat2cell(...

 unclamped_indeces, ones(1, size(unclamped_indeces, 1)), size(unclamped_indeces, 2));

 end

 function unclamped_indeces = unclamped_lex()

 % only for lang2

 unclamped_indeces = {

 1:lang2.n_sound_nodes;

 1:lang2.n_input_nodes;

 1:lang2.n_input_nodes;

 1:lang2.n_input_nodes;

 };

 end

 function unclamped_indeces = unclamped_gen()

 % only for lang2

 unclamped_indeces = {

 1:lang2.n_sound_nodes;

 1:lang2.n_input_nodes;

 1:lang2.n_input_nodes;

 1:lang2.n_input_nodes;

 1:lang2.n_input_nodes;

 1:lang2.n_input_nodes;

 };

97

 end

 end

end

	1 Introduction
	1.1 Boundaries of phonology
	1.2 Neural view on phonology

	2 Akanje, one specific case of vowel reduction in Russian
	2.1 Existing phonological accounts of akanje
	2.2 Akanje in a deep Boltzmann machine

	3 Methodology
	3.1 Deep Boltzmann machines
	3.2 Training dataset
	3.2.1 Toy language with akanje
	3.2.2 Auditory input representation
	3.2.3 Semantic input representation
	3.2.4 Full input representation

	3.3 Network architecture
	3.4 Training algorithm
	3.4.1 Initial settling phase
	3.4.2 Hebbian learning phase
	3.4.3 Dreaming phase
	3.4.4 Anti-Hebbian learning phase

	3.5 Programming and visualising tools

	4 Analysis
	4.1 Verifying training parameters
	4.2 Modelling comprehension and production of words in the toy language
	4.3 Proficiency of the network in the toy language
	4.4 Phonological categories in comprehension and production
	4.5 Phonological category of [ɐ] in comprehension
	4.6 Phonological category of [ɐ] in production

	5 Discussion
	5.1 Answering the research questions
	5.2 What do different phonological categorisations mean?

	6 Conclusion
	References
	Appendix 1: Proficiency tables
	Appendix 2: Source code of class dbm (MATLAB)
	Appendix 3: Source code of class measure (MATLAB)

