
Effect of Phonological Proximity on the

Identification of Novel Languages

By: Zion Smith
12835722

Supervisor: Dr. Marijn van ‘t Veer

BA Thesis Linguistics

27 June 2022

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Table of Contents 2

1. Abstract 3

2. Introduction 3

2.1. Background 3

2.2. Phonological Macrosampling Via Existing Language Repositories 6

3. Methods 8

3.1. Construction of Prototype Phonology 8

3.2. Generation of Stimuli 10

3.3. Macroarea Parameters 10

3.4. Prototype Phonologies 11

3.6. Experimental Method 22

4. Results 23

5. Conclusion and Discussion 25

5.1. Data Analysis 25

5.2. Methodological Improvements and Possibilities for Further Study 26

5.3. Closing 27

Bibliography 28

Appendix A - Macroarea Parameters 30

Appendix B - Produced Strings Per Macroarea 32

Appendix C - Code for Phonology and Sample Generation 36

2

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

1. Abstract

Previous research has indicated that languages are often confused with others that are from the

same geographic region, yet the underlying mechanism behind this correlation is not clear

(Skirgård et al., 2017). In line with the Genus-Macroarea method of language sampling

(Miestamo, 2008), I propose that phonological proximity to a hypothetical prototype language

of a macroearea is the main factor influencing this perceptual geographic grouping of

languages. In order to test this, I created a Python script that aggregates data from two existing

language databases in order to compile a prototypical phonology for 10 macroareas, and then

generates a series of random syllables adhering to that phonology. Participants were then asked

to complete a language identification task using recordings of the prototype languages. Results

from the experiment were largely insignificant. However, I was able to demonstrate that

participants’ performance varied dramatically and significantly between macroareas.

Furthermore, this investigation’s innovative method opens up many opportunities for further

research.

2. Introduction

2.1. Background

Globalization has brought Earth’s many languages into closer contact than ever. People today

are far more likely to speak a language from an entirely different part of the world, or at the

very least, have extensive contact with native speakers of foreign languages. This is especially

true in countries with significant immigrant populations, such as the United States. As a result of

this, it is also more likely than ever for us to come into contact with a completely novel

language, whether in person or over the internet. In this situation we cannot help but try to

identify what it is we are listening to. Oftentimes we are able to take a guess as to where the

language originates, perhaps because it sounds similar to languages we are already familiar

with. On other occasions, we may be left dumbfounded.

Yet as it stands, there is a considerable gap in research relating to the identification of previously

unheard languages and the factors that influence such decision-making. In particular, no study

has investigated the ability of an individual to correlate a completely novel language to a

familiar geographic region. I predict that American adults possess a significant ability to

categorize unknown languages by geographic area. Furthermore, I propose that phonological

proximity to a hypothetical prototype language should be the most important factor in having

listeners associate a language with a region.

3

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Of great use to this study is an analysis of the data from the now-defunct Great Language Game

(Skirgård et al., 2017). This online quiz presented players with a short audio recording from an

unspecified language, after which players were asked to make a forced-choice guess about the

identity of the language. As the game progressed, more choices were added out of the game’s

pool of 78 languages. The study in question sought to find out which languages were confused

for each other, and if any clear patterns could be identified. 15 million guesses were examined.

A Neighbor-Net was used to visualize how often each language was confused for each other

language in the dataset. Using this, the researchers were able to demonstrate that geographic

proximity was by far the best predictor of which languages would be confused with each other.

This even proved to be a stronger predictor than genetic relationships, although the two often

coincide. For example, the two languages confused with each other most often were Punjabi

and Kannada; two languages from completely distinct language families, but with a close

geographic proximity and an extensive historical relationship. Additionally, similar phoneme

inventories were found to have a significant effect on the likelihood of two languages being

confused for each other, although this effect was often overshadowed by geographic proximity.

Dryer (1989) introduces the concept of continent-sized linguistic areas as an explanation for

such areal categories that seemingly supersede genetic relationships. He purports that

large-scale areal phenomena are more widespread than is generally thought, thanks to ancient

language contact or perhaps even deep genetic relationships that go beyond the limits of

contemporary linguistics. Miestamo (2008) builds upon this idea with the Genus-Macroarea

method of language sampling. In the method, the primary genealogical stratification is made at

the genus level, and the primary areal stratification at the level of macroareas (Miestamo et al.,

2016, p. 247). The findings of Skirgård et al. (2017) seem to show that people categorize

languages more by macroarea than by genetic relationship. These perceptual macroareas,

however, do not align with those defined in Dryer (1992): Africa, Eurasia, Southeast Asia &

Oceania, Australia & New Guinea, North America, and South America. Eurasia in particular does

not appear to be a cohesive category among players of the game, as there is a clear division

between European languages and Asian languages. Additionally, there is a clear divide between

East Asian and South Asian languages (Skirgård et al., 2017, pp. 16).

As interesting as the findings from Skirgård et al. (2017) are, the study was inevitably held back

by a number of issues. For the most part, this is because the Great Language Game was never

intended to be used for linguistic research. Although it wound up providing the researchers with

a truly massive amount of data, it also meant that they were unable to control the means of

4

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

data collection. Due to the anonymous nature of the game, the only participant data available

was their country of origin, as determined by their IP address. Participants’ full language

background, level of education, experience in the field of linguistics, and even age were

completely unknown. The stimuli used in the game were hardly representative of the world’s

languages; roughly half of them were from the Indo-European language family, with several

continents (North America, South America, Australia) being excluded from the game entirely.

Most crucially of all, the researchers had no way to know for sure what participants were basing

their guesses on, whether that be phonology, vocal quality, lexical items, or previous experience

with the language in question. Nonetheless, the results of the analysis provide an excellent

starting point for further research.

Other studies have attempted to specifically examine the phonological stereotypes people hold

about particular geographic regions, albeit on a smaller scale. Mitchell et al., (2017) found that

African Americans living in a largely working class neighborhood of Columbus, Ohio were able to

identify on a physical map of the United States where various dialects of African American

English (AAE) could be found. They were even able to indicate where specific phonological

features were prominent, and several participants even drew rough isoglosses on the map. For

the most part, the stereotypes that participants shared lined up with existing research on the

phonological variation of AAE. These findings are crucial in that they show people’s ability to

correlate (stereotypes about) phonological features to geographic regions. However, the study

only explores one community’s ability to differentiate dialects of a singular ethnolect, and

furthermore only those who belong to its associated ethnicity. It is not made known, for

example, whether Americans of any race hold salient phonological stereotypes of languages

other than English within the United States, or about languages from any other area of the

world.

Over a decade prior, Thomas & Reaser (2004) found that both European Americans and African

Americans both had difficulty identifying the ethnicity of African Americans from Hyde County,

North Carolina, whose variety differs from “prototypical” AAE because it shares several

phonological features with the local European American vernacular. This held true even in the

presence of lexical and morphological features emblematic of AAE. It would seem that

phonological proximity supersedes other identifying factors in situations where they conflict.

Although this study does not deal with geography whatsoever, it is not inconceivable to imagine

similar findings in that regard. For example, a language originating from the Middle East may be

conflated for a European language if it exhibits a phonology that is more prototypical of Europe

than it is of the MENA region. Indeed, Skirgård et al. (2017) find some examples; Hebrew is

5

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

confused for European languages (especially Yiddish) far more than it is confused for its closest

geographic neighbors and genetic relatives.

At first glance, it may seem that my proposal contradicts the findings of Skirgård et al. (2017).

Rather, I believe it supplements them. Claiming that phonological similarity is the strongest

factor influencing language identification does not undermine the impact of geographic

proximity and historical relationships. Quite the contrary, they are the strongest predictors

precisely because they have the largest effect on a language’s phonology. Yet in the case of

natural languages, it seems that these factors are hopelessly intertwined. As in Skirgård et al.

(2017), there seems to be little way to ensure that a participant is solely basing their decision on

phonology and not on other linguistic or extralinguistic factors. Additionally, it is nigh impossible

that any natural language will exhibit a perfectly prototypical phonology for its region, though it

may come fairly close.

This study will attempt to resolve these issues by employing a series of artificially constructed

languages. Each language will exhibit a phoneme inventory, syllable structure, and prosody that

is prototypical of the linguistic macroarea it represents. These constructed languages will

henceforth be referred to as prototypes. This all will be accomplished via a Python script that

gathers data from two existing language databases: the World Atlas of Language Structures

(Dryer & Haspelmath, 2013) and PHOIBLE 2.0 (Moran & McCloy, 2019).

In doing so, this study seeks to answer the following research questions:

1. Are American adults able to identify the origin of an unknown language from a given

linguistic macroarea, given that the language exhibits a phonology prototypical of that

macroarea?

2. How does this ability vary between macroareas?

This ambitious project calls for a highly innovative method of data collection and stimuli

generation.

2.2. Phonological Macrosampling Via Existing Language Repositories

For the purposes of this investigation, we have the opportunity to experiment with our data

sampling method. In most cases, linguists are required to carefully select a diverse and

representative small sample of languages that fits the scope of their research project. However,

by using the existing language databases of PHOIBLE 2.0 and the World Atlas of Language

Structures (WALS), we can forgo the sampling process entirely and analyze every single

6

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

language present in the database within a specified set of geographic boundaries.

“Macrosampling” in this manner is only feasible due to the automated manner of stimulus

generation employed. Such a large sample of data should increase the accuracy of the script’s

calculations significantly.

PHOIBLE 2.0, or the Phonetics Information Base and Lexicon, is a repository of cross-linguistic

phonological inventory data, which have been extracted from source documents and tertiary

databases and compiled into a single searchable convenience sample (Moran et al., 2019).

Release 2.0 from 2019 includes 3,020 inventories that contain 3,183 segment types found in

2,186 distinct languages. This database will serve as the basis for generating a segment

inventory for a prototype language that is representative of a given macroarea.

WALS (Dryer & Haspelmath, 2013) is a large database of structural (phonological, grammatical,

lexical) properties of languages gathered from descriptive materials (such as reference

grammars) by a team of 55 authors. There are 144 chapters in the database, of which this study

will use just 2. The first is Chapter 12: Syllable Structure (Maddieson, 2013) which compares

primarily the maximal syllable from a large sample of world languages. The second is Chapter

17: Rhythm Type which examines the presence or absence of rhythmic stress, also from a large

sample of world languages. These two chapters will allow us to determine important

phonological features for our generated prototype languages, aside from segment inventory.

Although this study adopts some terminology from the Genus-Macroarea method of language

sampling, and many of its assumptions are based on that underlying theory, it will not employ

the method itself. Every language present in the databases will be used by the algorithm,

regardless of its family or genus. For the purposes of this study, to do otherwise would be

unnecessary and perhaps even counter-productive. The goal is not to prove any underlying

phonological tendencies as occurring independently of genetic relationships. Rather, we are

only concerned with the surface-level patterns average people will perceive.

Overrepresentation of minority language families in the algorithm will likely yield patterns that

are unrecognizable to the average person. It could also be argued that languages should be

weighted according to their total number of speakers. However, this is bound to pose problems

in some macroareas. Mandarin Chinese, for example, has such a large speaking population in

East Asia that it would render all other languages virtually irrelevant, spare perhaps Japanese.

For the purposes of this study, the simplest solution is to weigh every language equally.

7

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

3. Methods

3.1. Construction of Prototype Phonology

A series of artificially constructed languages, or prototypes, was created using a Python script

that incorporates the existing language databases of WALS and PHOIBLE 2.0. These prototypes

are devoid of meaningful lexical items, morphology, and syntax, but appear outwardly to be as

complex as a natural language. Each prototype has a phoneme inventory, syllable structure, and

prosody that is prototypical of the linguistic macroarea it is meant to represent. Each factor is

explained in detail below.

Consonants

The consonant inventory was determined using PHOIBLE 2.0. A consonantal place of

articulation, manner of articulation, or manner of voicing was added to the constructed

language’s phonology if it occurred in at least 60% of the specified macroarea’s languoids. For

example: despite being common cross-linguistically, fricatives occurred in only a small minority

of Australian languages, so they were not added to the prototype’s phonology. On the other

hand, the cross-linguistically rare lamino-alveolar place of articulation occurred in over 60% of

Australian languages, so it was added to the prototype’s phonology.

Out of the natural languages that had each category, the average number of segments

occupying that category was determined, and that number of the most common segments was

retrieved and added to the prototype’s phonology. For example: out of the languages in the

Middle East & North Africa macroarea that have velar consonants, the average inventory of

velars was determined to be 4. Thus, the 4 most frequently occurring velars were identified; [k],

[g], [x], and [ɣ]. These segments were subsequently added to the prototype’s phonology.

After each category had been filled, the consonant inventory was pared down by removing

every segment that did not appear in at least one place of articulation, manner of articulation,

and manner of voicing in the prototype’s phonology. In the Australian prototype phonology, [ʈ]
was one of the most frequently occurring retroflex consonants. However, it was not one of the

most frequently occurring plosives, and it was therefore removed from the phonology.

Vowels

The vowel inventory was determined using PHOIBLE 2.0. It was constructed in much the same

way as the consonant inventory, but with the relevant categories being vowel type and vowel

length. Valid vowel types included voiced, voiceless, and nasal. Vowel length was measured on a

8

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

simple short or long binary. During the process of stimuli generation, all vowels in a prototype’s

phonology were equally likely to occur.

Tones

The tone inventory was determined using PHOIBLE 2.0. Again, this was done in much the same

way as the consonant and vowel inventories. However, tone was not split into any categories

whatsoever. Tone as a whole was included in a prototype’s phonology if it was present in at

least 60% of the languages in that macroarea. The average tone inventory size was then

calculated out of that set of languages, and that number of the most commonly occurring tone

segments was added to the prototype’s phonology. As can be seen in subsection 3.4, tone was

only present in the Sub-Saharan African prototype.

Syllable Structure

The syllable structure was determined using WALS Chapter 12. The most frequently occurring

syllable structure within a macroarea was added to the constructed language’s phonology. The

possible values, as determined by WALS, were Simple, Moderately Complex, and Complex.

Simple is defined as having a maximal syllable of CV. Moderately Complex is defined as having a

maximal syllable of CCV or CVC. Languages with a Complex syllable structure are those with any

maximal syllable greater than CCV or CVC. For the purposes of this experiment, any prototype

with a Complex syllable structure was treated as having a maximal syllable of CCVCC.

Rhythm Type

The rhythm type was determined using WALS Chapter 17. As with syllable structure, the most

frequently occurring rhythm type was added to the prototype’s phonology. The possible values,

once again determined by WALS, were Trochaic, Iambic, Dual, or None. For the purposes of this

experiment, constructed languages with a rhythm type of Dual or None were treated identically,

and stress was placed randomly on either the left-hand or right-hand syllable in disyllabic words.

Emblematic Phonemes

The final step of prototype phonology generation was the identification of emblematic

phonemes. A segment was considered emblematic if it occurred in, at most, just 1 other

prototype phonology. Phonemes that were identified as emblematic were used more frequently

in stimuli generation.

9

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

3.2. Generation of Stimuli

After a full set of phonological parameters had been produced, a second script was used to

generate a string of 40 syllables adhering to each prototype’s phonology. In addition to the

criteria unique to each language, all syllables were made to strictly adhere to the sonority

hierarchy, and every word was either monosyllabic or disyllabic. Every segment in the language’s

phoneme inventory appears at least once in its string. Additionally, the script identifies a

number of emblematic phonemes for each language which appear in, at most, one other

prototype. These emblematic phonemes appear at least twice in each sample.

The full scripts for both phonology construction and stimuli generation may be found in

Appendix C.

3.3. Macroarea Parameters

The boundaries of each macroarea used can be seen in Figure 1, which was also presented to

participants. Rather than using the traditional six macroareas as defined by Dryer (1992),

several have been divided into smaller blocks. Influenced by the results of Skirgård et al. (2017),

Eurasia has been divided into Europe, Central Asia, South Asia, East Asia, and Southeast Asia. In

the interest of maintaining a comparable size between macroareas, the Middle East and North

Africa (MENA) region has been separated from Sub-Saharan Africa, and Central America has

been separated from the rest of North America. Oceanic languages have been excluded from

the experiment entirely, as it would be difficult to easily convey their geographic boundaries to

participants. Much of North and Central Asia was excluded from the experiment as well. One

could argue that this region contains a notable sprachbund (Altaic), but it was assumed that

such a macroarea would not be recognizable to participants. Finally, the island of Papua was not

included. Despite having an exceptional amount of linguistic diversity, it was believed that

participants would consider it too small to constitute its own macroarea.

The macroareas are also listed in Appendix A, alongside their latitudinal and longitudinal

parameters that served as the script’s initial input.

10

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Figure 1 - World Map, Numbered by Macroarea

1. North America

2. Central America

3. South America

4. Europe

5. Middle East & North Africa (MENA)

6. Sub-Saharan Africa

7. India

8. East Asia

9. Southeast Asia

10. Australia

3.4. Prototype Phonologies

Overall, the script was very successful in producing phonologies that were both believably

structured and distinct from each other. However, 2 out of the 10 macroareas exhibited no

emblematic phonemes whatsoever. These macroareas may still be identified by their segment

inventory as a whole, as well as by their syllable structure and rhythm type. The full

phonological parameters for each prototype language may be found in the following pages.

11

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

1. NORTH AMERICA

Table 1 - North America Consonants

Figure 2 - North America Vowels

Consonants: 21

Vowels: 7

Syllable Structure: Complex

Rhythm: None

Emblematic Phonemes: [kʼ], [kʷ], [tʼ], [χ]

North America’s phonology is noteworthy due to the presence of uvular and ejective

consonants, as well its complex syllable structure. Additionally, it has a vowel inventory that is

quite small.

12

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

2. CENTRAL AMERICA

Table 2 - Central America Consonants

Figure 3 - Central America Vowels

Consonants: 15

Vowels: 8

Syllable Structure: Complex

Rhythm: None

Emblematic Phonemes: None

Central America’s phonology is one of only two with no emblematic phonemes whatsoever.

Overall, it has very few identifiably unique features per the criteria of this study. It has a

consonant inventory that is slightly smaller than average.

13

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

3. SOUTH AMERICA

Table 3 - South America Consonants

Figure 4 - South America Vowels

Consonants: 12

Vowels: 8

Syllable Structure: Moderately Complex

Rhythm: Trochaic

Emblematic Phonemes: [ɨ]', [ã]

South America’s phonology is notable for its considerably small consonant inventory, which is

also the only inventory to contain the alveolar tap. It is one of just two prototypes to feature

nasal vowels. It exhibits a strictly trochaic rhythm.

14

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

4. EUROPE

Table 4 - Europe Consonants

Figure 5 - Europe Vowels

Consonants: 29

Vowels: 14

Syllable Structure: Complex

Rhythm: Trochaic

Emblematic Phonemes: [ʒ], [s̪], [dz],

[ʎ], [æ], [ä]

Europe’s phonology has both the largest consonant and vowel inventory. It also has the most

emblematic phonemes of any region. It is also notable for having extensive voicing contrasts,

several palatal consonants, and front-rounded vowels. Europe has a strictly trochaic rhythm

type and complex syllable structure.

15

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

5. Middle East & North Africa

Table 5 - MENA Consonants

Figure 6 - MENA Vowels

Consonants: 27

Vowels: 9

Syllable Structure: Moderately Complex

Rhythm: Trochaic

Emblematic Phonemes: [ħ], [ɣ]

The Middle East and North Africa region is noteworthy for the presence of uvular plosives and

pharyngeal fricatives. It has a large consonant inventory, and fairly average vowel inventory. Its

rhythm is strictly trochaic.

16

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

6. SUB-SAHARAN AFRICA

Table 6 - Sub-Saharan African Consonants

Figure 7 - Sub-Saharan African Vowels

Consonants: 22

Vowels: 10

Tones: ˦, ˨, ˧
Syllable Structure: Moderately Complex

Rhythm: Trochaic

Emblematic Phonemes: kp, ɡb, ɓ

The Sub-Saharan Africa prototype is the only one to feature phonemic tone, of which it has a

simple high, mid, and low contrast. It is also noteworthy for the presence of labial-velar plosives

as well as the bilabial implosive. Its rhythm type is strictly trochaic.

17

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

7. INDIA

Table 7 - Indian Consonants

Figure 8 - Indian Vowels

Consonants: 24

Vowels: 13

Syllable Structure: Moderately Complex

Rhythm: None

Emblematic Phonemes: ʈ, ɖ, cç, ɟʝ, ɪ

The Indian prototype is one of only two to feature retroflex consonants, and is the only region

with palatal affricates. It also has three-way voicing contrasts for the bilabial and velar plosives.

Along with South America, it is one of two prototypes to contain nasal vowels. It has a fairly

large consonant and vowel inventory.

18

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

8. EAST ASIA

Table 8 - East Asian Consonants

Figure 9 - East Asian Vowels

Consonants: 27

Vowels: 14

Syllable Structure: Moderately Complex

Rhythm: None

Emblematic Phonemes: [tʰ], [t̠ʃʰ], [ɑ]

East Asia has three way voicing contrasts with its bilabial and velar plosives, similar to India. It is

also noteworthy for its aspirated affricates, front rounded vowels, and unrounded back vowels.

Interestingly, the East Asian prototype does not contain phonemic tone. It has a fairly large

consonant and vowel inventory.

19

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

9. SOUTHEAST ASIA

Table 9 - Southeast Asian Consonants

Figure 10 - Southeast Asian Vowels

Consonants: 15

Vowels: 10

Syllable Structure: Moderately Complex

Rhythm: Trochaic

Emblematic Phonemes: None

Southeast Asia is the second region with no emblematic phonemes. However, it can be

identified by the presence of a three-way voicing contrast in the bilabial plosives, an extensive

inventory of nasals, and an otherwise quite small consonant inventory. Its rhythm is strictly

trochaic.

20

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

10. AUSTRALIA

Table 10 - Australian Consonants

Figure 11 - Australian Vowels

Consonants: 14

Vowels: 4

Syllable Structure: Moderately Complex

Rhythm: Trochaic

Emblematic Phonemes: [ȵ], [ȶ], [ɭ]

Australia can be identified by its numerous places of articulation, including retroflex and

lamino-alveolar consonants. On the other hand, it has an exceptionally small number of

manners of articulation. Australia is the only region to completely lack fricatives. It also has the

smallest vowel inventory of any region. Its rhythm is strictly trochaic.

21

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

3.5. Generated Strings

Once fully generated, each sequence of 40 syllables was split into two halves, in order to create

a total of 20 strings consisting of 20 syllables each.

Transcripts of the 20 produced strings can be found in Appendix A.

Each string of syllables was performed orally by one researcher. Said researcher is well-trained

in phonology and transcription, and attempted to pronounce each string as accurately as

possible. The speaker was allowed to make minute changes to the script during recording. For

example, in the case of a consonant cluster that was deemed too difficult or impossible to

pronounce, the speaker may have chosen to insert a schwa or other reduced vowel.

The researcher responsible for performing the strings did not struggle very much with

pronouncing any sequences of phonemes. However, there were a handful of syllables that were

difficult to pronounce, as well as some that the researcher deemed impossible. One example is

the impossible syllable [ɓmu˦] which occurred in the Sub-Saharan African string. The researcher

opted to remove the nasal [m] entirely in favor of maintaining the emblematic implosive [ɓ].

Every change was made in agreement with two assistants who were monitoring the recording

session. These issues are likely the result of phonotactics being largely ignored during the

construction of the stimuli. Phonotactics are mentioned in further detail in Section 5.

Nonetheless, the two assistants assessed the output of the script as being quite naturalistic.

3.6. Experimental Method

The method of data collection for this study was an online questionnaire. Participation in the

study was limited to adults (aged 16 or higher) with American citizenship. Over a period of

several weeks, the questionnaire received 82 responses. In the first phase of the questionnaire,

participants were presented with one of the 20 stimuli. They were then asked to indicate which

geographic region they believe the language originated from. This was a forced-choice selection

out of the set of 10 macroareas used in the study. A map was displayed on screen to

demonstrate to participants where the boundaries of each region lie. Participants were also

asked whether they are familiar with the language in question, and if so, to identify which

language it is. This option is included purely to dissuade participants from realizing that the

stimuli are not taken from natural languages. Participants completed this guessing task for each

of the 20 stimuli.

22

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

The second phase of the questionnaire asked participants a number of questions about

themselves. They were asked to indicate their nationality, age, level of education, history of

living abroad, and history of language exposure. Additionally, each participant was asked to

indicate which factors they believe influenced their decisions in the first phase of the

experiment.

Following completion of both phases, participants were debriefed about the true nature of the

experiment. They were informed that the samples presented to them were not from naturally

occurring languages, but were in fact the output of a computer script. Additionally, participants

were allowed to relisten to any sample they wished, but this time labeled with the correct

answer. Participants were also allowed to inspect their final score.

4. Results

Overall performance was noticeably poor. The mean score for the experiment was a mere 3.77

out of a maximum score of 20, or in other words an accuracy of 18.85%. However, this

performance still indicates that participants were guessing at a level higher than chance.

Additionally, this performance varied significantly between regions. The macroarea identified

correctly most frequently was Europe, with a fairly high accuracy of 56.1%. The macroarea

identified correctly the least frequently was South America, with a miniscule accuracy rate of

3.7%. Several other macroareas were also guessed correctly with a rate of roughly 10% or less,

the rate to be expected if participants were guessing randomly. These macroareas are South

America, Central America, North America, and Australia.

By cross-examining participants' responses about their background with their answers, we can

see that having lived in a given macroarea has a varying effect on a participants ability to

identify the language from that region (Table 11). It appears that with macroareas which had a

high overall accuracy, having lived in that macroarea can increase accuracy even further, as with

the MENA stimuli, but it can also have no noticeable effect, as with the Europe stimuli. On the

other hand, with macroareas which had a low overall accuracy, having lived in the macroarea

can have a negative effect on accuracy. Ultimately though, these tendencies are far from

consistent, and none of them are statistically significant overall effect (p = 0.745). Similar results

can be seen with language experience, likely because the two are often linked (Table X). Once

again, language exposure was found to have no significant effect on accuracy (p = 0.744).

23

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Other aspects of a participant’s background were also

found to have no significant effect on their overall score.

This includes age (p = 0.7365), educational background (p =

0.786), and level of experience in the field of linguistics (p =

0.975).

Participants were asked which factors they believed

influenced their decision-making during the experiment.

The answers to this question can be seen in Table X. As

expected, the most frequent options chosen were those

that were considered in the construction of the stimuli:

consonants and vowels, tones, stress and rhythm, and the

complexity of the syllables. Additionally, 23 participants out

of 82 indicated that the speaker’s vocal quality influenced

their decision-making. As this researcher was a native

speaker of English, this may be partially responsible for

skewing the responses in favor of Europe.

24

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

5. Conclusion and Discussion

5.1. Data Analysis

Given the exceptionally low performance from the participants, it is not suitable to make any

overarching conclusions about the effect of phonological proximity on the identification of

unknown languages. However, the results also do not disconfirm the hypothesis that

phonological proximity is the most relevant factor, as participants were evidently not guessing

completely randomly. There are several other explanations for the results. For example,

phonological proximity may only act as an exceptional identifying factor alongside some other

factors. Due to this study only testing American adults, it may be the case that adults of other

nationalities may exhibit a far clearer effect of phonological proximity on language

identification. It is also possible that the stimuli were deficient in some way. Potential

improvements to the stimulus can be found in subsection 5.2.

As there was no significant effect of age, level of education, or experience in the field of

linguistics, it is not possible to make any conclusions about the effect of these variables.

Likewise, there was no significant effect of living history or language experience on a

participant’s overall accuracy, and it is not possible to identify a correlation there.

What these results do indicate, however, is that American adults are better at identifying

languages with prototypical phonologies from certain macroareas than they are from others. In

particular, they do decently well at identifying such languages from Europe and the Middle East

and North Africa region, and do badly at identifying such languages from the Americas and

Australia. What is not discernible from this data is why such a discrepancy exists. There are

many possible explanations, however. Although previous language experience was found to not

have a significant effect, it is possible that the total population of speakers from each macroarea

is a relevant factor. This could partially explain the discrepancy between macroareas. It may also

be the case that the total population of speakers is not the most important factor, but rather the

representation of a macroarea’s languages in popular culture or education.

Perhaps the presence of a large “emblematic” phoneme inventory is correlated with a higher

accuracy rate. This could certainly explain the accuracy at which Europe was guessed, as its

prototype has the most emblematic phonemes by far. However, emblematic phonemes were

defined somewhat arbitrarily in this present study, and were only defined relative to the other

macroareas tested in the study. For this reason, it makes little sense to treat it as a legitimate

independent variable.

25

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Another possible explanation is that linguistically diverse macroareas are identified less often

than languages from macroareas that are dominated by a small number of language families. If

this were the case, it would indicate that phonological proximity is influenced by genetic

relationships far more than it is by geographical proximity. It could also help explain some of the

results from this study. For example, Europe’s languages overwhelmingly belong to the

Indo-European language family, while the Americas are home to an incredibly large set of

language families. However, this could not explain Australia’s low rate of identification, as the

continent is largely dominated by the Pama-Nyungan family. Of course, this discrepancy

between macroareas is likely due to a conflux of numerous factors. In order to identify whether

or not these factors truly have an effect, further research is required. Possibilities for future

studies are outlined in the next subsection.

5.2. Methodological Improvements and Possibilities for Further Study

In order to answer this investigation’s initial research question about the effect of phonological

proximity on language identification, a similar study to this one could be carried out, but with a

number of modifications. For example, our present study could have benefited greatly from a

proper control stimulus. This could be one constructed language whose phonology is not

prototypical of any macroarea, and perhaps one constructed language whose phonology is

based on the complete set of all world languages. Additionally, it could be wise to create a

continuum of languages for each macroarea which range from 0% to 100% phonological

proximity to the theoretical prototype language. In other words, one stimulus could be identical

to the prototype used in this study, one stimulus could have a phonology with a completely

different set of phonemes, and yet another stimulus could share roughly 50% of the segments

with the prototype. Such a setup would better allow for an analysis of phonological proximity,

separated from other relevant variables.

The method of phonological macrosampling and automated stimulus generation used in this

project was ambitious and very innovative. Despite the inconclusive results of the experiment

itself, it demonstrated that macrosampling can be a very useful tool for linguistics research. The

sheer amount of data processed in this investigation was only possible using an automated

script, and would not have been manageable using more traditional methods. However, it was

not necessarily employed perfectly, and several improvements could be made to this

experiment’s method. Some factors were not taken into account in the construction of the

stimulus that perhaps could have been. One example is word length. It is true that word

boundaries are often hard to discern in continuous speech, but the length of a word can affect

26

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

other aspects of speech, most notably rhythm. Another important factor that was largely

ignored is phonotactics. Phonemes often do not occur equally often in the onset as they do in

the coda and vice versa. One example is the velar nasal [ŋ], which is fairly common in Europe,

but rarely if ever occurs word-initially (Anderson, 2013). In our current study, this issue was not

accounted for whatsoever, and [ŋ] was allowed to occur in the onset position in the European

speech sample. Similarly, not all phonemes are equally likely to appear in consonant clusters as

others. This issue was partially remedied by having all generated syllables adhere strictly to the

sonority hierarchy, but this approach misses the multitude of subtle nuances between the

phonotactics of languages around the world.

Both word length and phonotactics were not excluded intentionally, but due to a lack of

relevant data; neither WALS nor PHOIBLE 2.0 contain the relevant information. Thus, future

versions of the sampling method employed in this study could benefit greatly from

incorporating data from more language repositories. At the moment, it appears that such

repositories are not readily available or do not yet exist. This study hopefully demonstrates that

these repositories are invaluable to linguistic research as is, and that their expansion could open

up countless opportunities for future research.

5.3. Closing

This study sought to investigate the effect of phonological proximity on the identification of

unknown languages. Using an elaborate Python script, a series of prototype languages were

created based on 10 macroareas. These languages were then used as part of a language

guessing game played by 82 participants. Overall performance in the guessing task was far

lower than expected, making it unclear whether phonological proximity truly is the most

important factor in the identification of unknown languages. However, it was demonstrated that

participants’ performance varied greatly between macroareas. The reason behind this is not

immediately clear, and there are many possible explanations. Further studies could improve on

the methodology of this experiment to more effectively assess the effect of phonological

proximity on language identification, or to assess the underlying reason why some macroareas

are identified more easily than others. All things considered, this study served as an effective

pilot test for an innovative method of language sampling and stimulus generation, and it has

opened up several avenues for further research.

27

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Bibliography

Dryer, M. S. (1992). The Greenbergian word order correlations. Language, 68(1), 81.

https://doi.org/10.2307/416370

Dryer, M. S. (1989). Large linguistic areas and language sampling. Studies in Language, 13(2),

257-292. https://doi.org/10.1075/sl.13.2.03dry

Dryer, Matthew S. & Haspelmath, Martin (eds.) 2013. The World Atlas of Language Structures

Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at

http://wals.info, Accessed on 2022-06-23.)

Gregory D.S. Anderson. 2013. The Velar Nasal. In: Dryer, Matthew S. & Haspelmath, Martin

(eds.) The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for

Evolutionary Anthropology. (Available online at http://wals.info/chapter/9, Accessed on

2022-06-23.)

Ian Maddieson. 2013. Syllable Structure. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) The

World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary

Anthropology. (Available online at http://wals.info/chapter/12, Accessed on 2022-06-23.)

Miestamo, M. (2008). Standard negation. https://doi.org/10.1515/9783110197631

Miestamo, M., Bakker, D., & Arppe, A. (2016). Sampling for variety. Linguistic Typology, 20(2),

233-296. https://doi.org/10.1515/lingty-2016-0006

Mitchell, D., Lesho, M., & Walker, A. (2017). Folk perception of African American English regional

variation. Journal of Linguistic Geography, 5(1), 1-16. https://doi.org/10.1017/jlg.2017.2

Moran, Steven & McCloy, Daniel (eds.) 2019. PHOIBLE 2.0. Jena: Max Planck Institute for the

Science of Human History. (Available online at http://phoible.org, Accessed on 2022-06-23.)

Rob Goedemans, Harry van der Hulst. 2013. Rhythm Types. In: Dryer, Matthew S. & Haspelmath,

Martin (eds.) The World Atlas of Language Structures Online. Leipzig: Max Planck Institute

for Evolutionary Anthropology. (Available online at http://wals.info/chapter/17, Accessed on

2022-06-23.)

28

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Skirgård, H., Roberts, S. G., & Yencken, L. (2017). Why are some languages confused for others?

Investigating data from the great language game. PLOS ONE, 12(4), e0165934.

https://doi.org/10.1371/journal.pone.0165934

Thomas, E. R., & Reaser, J. (2004). Delimiting perceptual cues used for the ethnic labeling of

African American and European American voices. Journal of Sociolinguistics, 8(1), 54-87.

https://doi.org/10.1111/j.1467-9841.2004.00251.x

29

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Appendix A - Macroarea Parameters

The following table contains the latitude and longitude values inserted into the script to define

the 10 tested macroareas. Different combinations of values can generate different geographic

regions for testing.

Table A - Macroarea Parameters

Macroarea Min. Latitude(s) Max. Latitude(s) Min.
Longitude(s)

Max.
Longitudes(s)

1. North
America (NA)

32.6, 68, 53, 25,
29

84, 84, 72, 35,
35

-140, -75, -169,
-100, -120

-30, -8, -140,
-79, -100

2. Central
America (CA)

10, 7, 26, 22, 12 26, 11, 29, 32,
25

-120, -86, -104,
-120, -86

-83, -76, -98,
-104, -60

3. South
America (SA)

-57 13 -82 -31

4. Europe (EU) 36, 62, 76, 43 72, 67, 81, 78 -12, -25, 10, 21 28, -11, 33, 60

5. Middle East &
North Africa
(MENA)

19, 22, 12.5,
16.5

37, 41, 30, 30 -20, 27, 43, 40 39, 63, 60, 43

6. Sub-Saharan
Africa (AF)

-37, -6, -28 19, 15.5, -10 -20, 35, 42 40.5, 52, 53

7. India (IN) 4, 25 30, 37 61, 61 97, 80

8. East Asia (EA) 28, 34, 22, 18 52, 42, 28.5, 25 79, 73.5, 98, 108 148, 79, 134,
118

9. Southeast
Asia (SEA)

-10, 15, 16, -11,
3

18, 28.5, 23, 8,
21

92, 93, 101, 107,
114

110, 99.5, 107,
130, 128

10. Australia
(AU)

-45, -48 -11, -33 111, 165 155, 180

30

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

31

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Appendix B - Produced Strings Per Macroarea

North America

1. ˈjiː.ojm. wuj.ˈmiːq. ˈt̠ʃɛts.

ˈt̠ʃokʷ. wuχ.ˈtsejh. ˈlɛkʼ. ˈxus.

loχ.ˈwaj. ˈt̠ʃnit̠ʃ. na.ˈtsli.

ˈni. ˈqiːm. ˈoh. ˈnwi.

2. ˈa. ˈjin. ˈxɛwts. ˈhen.

ˈnot̠ʃ.nol. ˈleb. ˈt̠ʃme.tʼu.

jets.ˈtweh. ˈliːnt̠ʃ.kʷmɛkʷ. tsjejq.ˈjiːts.

ˈtlɛnk. ˈʃje. ˈlɛ. tʼow.ˈpla.

ˈtsɛkʼ.

Central America

1. ˈʃluh.ho̞m. ˈnow.wuː. ˈʃmuk.

os.ˈma. ˈjil. ˈbot̠ʃ.
ˈpa. ˈne̞ns. ˈnits.top.

ˈwat. ˈmo. ˈɡit̠ʃ. neb.ˈle̞n.

hul.ˈwets. ˈliwts.pe̞nt. ˈla.

2. ˈʃo̞b.bjo. ˈknuːl. ˈloj.

ˈno̞s.luːn. ˈje̞ɡ. ˈjel.luːl.
ˈtswe̞.na. ˈmin. mo̞t̠ʃ.ˈmo̞s.

ˈɡe̞. tsel.ˈkols.

South America

1. ˈĩt̠ʃ. ˈwe.sãm. ˈbut.hĩt.
ˈhĩd.ku. ˈmaw.tĩɾ. ˈwo.wã. ˈpi.t̠ʃãs.

ˈaw.t̠ʃa. ˈɾuɾ.wu. ˈha.me. ˈweɾ.

2. ˈut̠ʃ. ˈhɨ.ɾĩ. ˈnaw.t̠ʃoɾ.
ˈɨt̠ʃ.t̠ʃe. ˈhɨ. ˈmɨɾ.t̠ʃu. ˈtãɾ.
ˈɾiw. ˈwi.te. ˈkɨh.

ˈt̠ʃĩ. ˈɨt̠ʃ.ɾed. ˈwu.t̠ʃi.

32

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Europe

1. ˈs̪uːf.rärk. ˈʒə. ˈʎä.

ˈʃɔj. ˈnyf. ˈnə.jib. ˈjɔj.juj.

ˈcuh. ˈtəj. ˈmird̪.
ˈɲæx.xiʎ. ˈŋejs̪.nəɲ. ˈmɔdz.

2. ˈlijt̠ʃ. ˈre̞c. ˈʒä. ˈtso̞h.eɡ.

ˈhyv.ol. ˈbɛt.sjojr. ˈtsik.

ˈŋo̞.vəj. ˈt̠ʃo̞j. ˈljɛɲ. ˈtsryh.yr.

ˈt̪ær.ʒjuːt̠ʃ. ˈt̠ʃjarp.o. ˈdzɔts.tsy.

MENA

1. ˈħi. ˈt̠ʃɛʃ.ʊj. ˈkew.

ˈol. ˈxwu.d̠ʒil. ˈmi.raf.

ˈluː.jaɡ. ˈd̠ʒej. ˈweː.be. ˈwʊl.

ˈseː. ˈfrʊ. ˈhet̠ʃ. ˈwaj.ɡew.

2. ˈt̪es. ˈer.la. ˈħɛz.

ˈqu.brʊ. ˈruːk. ˈd̪an̪.
ˈɣa. ˈvat̠ʃ.ɡul. ˈħuːw.kra.

ˈɛl. ˈlɛ.ɣuːw. ˈɡwɛ.

ˈwor. ˈpuː.ruː.

Sub-Saharan Africa

1. ˈkpeː˧t̠ʃ. ˈbe˦.ziː˨. ˈd̠ʒa˧. ˈə˨ɲ.

ˈzo˦.t̠ʃu˦ɡb. ˈkpje˧. ˈji˨ɡb. ˈneː˧k.ɔ˧j.
ˈt̠ʃe˨t̠ʃ.lo˧. ˈɔ˦w. ˈd̠ʒu˧h.ɲa˧w.

ˈvə˦k. ˈte˦.ja˦. ˈiː˦ɓ.mu˧s. ˈd̠ʒla˨.

2. ˈlə˨ɡ.de˧. ˈɓmu˦.we˧m. ˈlə˧.ɲa˨f.
ˈvi˦w.wə˧. ˈlo˧. ˈɓeː˧j.
ˈse˨z. ˈfɲɛ˧. ˈt̠ʃmiː˨.və˧z.

ˈlə˦.tɛ˧l. ˈiː˨l. ˈwi˨h.

33

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

India

1. ˈkʰju.cçʊl. ˈɖiːk. ˈsʊ.

ˈriːɟʝ.rĩ. ˈʈiː.dar. ˈmʊ.

ˈŋĩcç. ˈsroː.ro. ˈd̪ɛɡ.boːpʰ.
ˈzʊd̪. ˈroːd̪. ˈɟʝ.ĩŋ.ɟʝo.

2. ˈŋi. ˈto. t̪oːr.ˈrən.

ˈsu.ŋɪ. ˈljʊ.ʊn. ˈput̪. pʰjɪ.ˈlə.

ˈliːr. ˈcçel.re. ˈloː. ˈnin.zəl.

ˈhɔʈ.jɪr. ɖɛs.ˈɲiːɟʝ. ˈəɡ.

East Asia

1. lɑtʰ.ˈɡar. ˈko. lɛtʰ.ˈtsʰe̞h. re.ˈmjoː.
ˈsɑl.t̠ʃʰe̞. ˈwij.mir. pʰə.ˈtsuːŋ. ɑʃ.ˈsnɯ.

ˈdos. ˈru.pyɲ. ˈt̪ef.ŋa. ˈrɛ.

2. ˈja. ˈre̞kʰ.wər. ˈɲɯr.rɑt̠ʃ. ˈŋi.rɛts.

zo.ˈɡɑ. ˈtʰɑm. ˈpʰuːw.ban.

ˈfɯʃ. ŋe̞.ˈku. ˈnɑ.

ˈnɔt̠ʃʰ. ˈlol. ˈʃe̞l.

Southeast Asia

1. ˈŋɔt. ˈwɯl. ˈɲi. ˈlu.lu.

ˈhle.lɔs. ˈhus.mɛ. ˈsiː. ˈtmiː.
ˈlɛw.dle. ˈbo.ɲwɯ. ˈwe.ɡŋɛ.

ˈmɔ. ˈho.swɔ. ˈwɔw. ˈməh.

2. ˈlɯ.hu. ˈlo.ŋa. ˈwo.

ˈŋɛ.nɔ. ˈiː. ˈpʰiw. ˈɡwi.kiː.
ˈslo.hwo. ˈwit. ˈwe.

ˈɔm.wɯɲ. ˈɡwɔ.

34

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Australia

1. ˈɭun.ta. ˈɭu.pu. ˈɭaw.wa.

ˈniːŋ. ˈiːw.ji. ˈȵwa.ȵak. ˈkiɭ.
ˈɭi.liɭ. ˈwiː.ljiː. ˈmu.ɭu. ˈtwi.ȶiːɭ.

2. ˈɭaȶ. ˈŋiː. ˈla.liːɭ.
ˈjiː. ˈŋa.uw. ˈjiːȶ.ȶu. ˈtwi.kiː.
ˈpa. ˈŋi. ˈwa.jiːȶ. ˈɳiw.

ˈt̪u.ŋa. ˈwip. ˈta.

35

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Appendix C - Code for Phonology and Sample Generation

All code was executed in an Anaconda Notebook running Python 3.9.7.

Defining two functions that can be used to create macroareas, or add to existing macroareas.

These functions are meant to be used with the following files:

WALS "WALSLanguages.csv": https://wals.info/languoid

PHOIBLE's "phoible.csv": https://github.com/phoible/dev/tree/master/data

PHOIBLE's "PhoibleLanguages.csv":https://phoible.org/languages

import pandas as pd

def new_macroarea_by_latlong(wals_source, phoible_source, phoible_lang_source, min_latitude, max_latitude,

min_longitude, max_longitude):

new_macroarea = []

walsLanguages = pd.read_csv(wals_source)

for language in walsLanguages.index:

iso_code = walsLanguages.at[language, 'iso_codes']

latitude = walsLanguages.at[language, 'latitude']

longitude = walsLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

if iso_code not in new_macroarea:

new_macroarea.append(iso_code)

phoible = pd.read_csv(phoible_source)

phoibleLanguages = pd.read_csv(phoible_lang_source)

for language in walsLanguages.index:

langID = phoibleLanguages.at[language, 'id']

latitude = phoibleLanguages.at[language, 'latitude']

longitude = phoibleLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

for entry in phoible.index:

if phoible.at[entry, 'Glottocode'] == langID:

iso_code = phoible.at[entry, 'ISO6393']

break

else:

continue

36

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
if iso_code not in new_macroarea:

new_macroarea.append(iso_code)

return new_macroarea

def append_macroarea_by_latlong(existing_macroarea, wals_source, phoible_source, phoible_lang_source,

min_latitude, max_latitude, min_longitude, max_longitude):

walsLanguages = pd.read_csv(wals_source)

for language in walsLanguages.index:

iso_code = walsLanguages.at[language, 'iso_codes']

latitude = walsLanguages.at[language, 'latitude']

longitude = walsLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

if iso_code not in existing_macroarea:

existing_macroarea.append(iso_code)

phoible = pd.read_csv(phoible_source)

phoibleLanguages = pd.read_csv(phoible_lang_source)

for language in walsLanguages.index:

langID = phoibleLanguages.at[language, 'id']

latitude = phoibleLanguages.at[language, 'latitude']

longitude = phoibleLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

for entry in phoible.index:

if phoible.at[entry, 'Glottocode'] == langID:

iso_code = phoible.at[entry, 'ISO6393']

break

else:

continue

if iso_code not in existing_macroarea:

existing_macroarea.append(iso_code)

Defining two functions that can be used to create macroareas, or add to existing macroareas.

These functions are meant to be used with the following files:

WALS "WALSLanguages.csv": https://wals.info/languoid

PHOIBLE's "phoible.csv": https://github.com/phoible/dev/tree/master/data

PHOIBLE's "PhoibleLanguages.csv":https://phoible.org/languages

import pandas as pd

37

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
def new_macroarea_by_latlong(wals_source, phoible_source, phoible_lang_source, min_latitude, max_latitude,

min_longitude, max_longitude):

new_macroarea = []

walsLanguages = pd.read_csv(wals_source)

for language in walsLanguages.index:

iso_code = walsLanguages.at[language, 'iso_codes']

latitude = walsLanguages.at[language, 'latitude']

longitude = walsLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

if iso_code not in new_macroarea:

new_macroarea.append(iso_code)

phoible = pd.read_csv(phoible_source)

phoibleLanguages = pd.read_csv(phoible_lang_source)

for language in walsLanguages.index:

langID = phoibleLanguages.at[language, 'id']

latitude = phoibleLanguages.at[language, 'latitude']

longitude = phoibleLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

for entry in phoible.index:

if phoible.at[entry, 'Glottocode'] == langID:

iso_code = phoible.at[entry, 'ISO6393']

break

else:

continue

if iso_code not in new_macroarea:

new_macroarea.append(iso_code)

return new_macroarea

def append_macroarea_by_latlong(existing_macroarea, wals_source, phoible_source, phoible_lang_source,

min_latitude, max_latitude, min_longitude, max_longitude):

walsLanguages = pd.read_csv(wals_source)

for language in walsLanguages.index:

iso_code = walsLanguages.at[language, 'iso_codes']

latitude = walsLanguages.at[language, 'latitude']

longitude = walsLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

38

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
if iso_code not in existing_macroarea:

existing_macroarea.append(iso_code)

phoible = pd.read_csv(phoible_source)

phoibleLanguages = pd.read_csv(phoible_lang_source)

for language in walsLanguages.index:

langID = phoibleLanguages.at[language, 'id']

latitude = phoibleLanguages.at[language, 'latitude']

longitude = phoibleLanguages.at[language, 'longitude']

if latitude > min_latitude and latitude < max_latitude and longitude > min_longitude and longitude <

max_longitude:

for entry in phoible.index:

if phoible.at[entry, 'Glottocode'] == langID:

iso_code = phoible.at[entry, 'ISO6393']

break

else:

continue

if iso_code not in existing_macroarea:

existing_macroarea.append(iso_code)

Defining the Europe macroarea

macroarea_europe = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

36, 72, -12, 28)

Iceland

append_macroarea_by_latlong(macroarea_europe, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

62, 67, -25, -11)

#Faroe Islands

append_macroarea_by_latlong(macroarea_europe, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

76, 81, 10, 33)

#Eastern Europe and Russia

append_macroarea_by_latlong(macroarea_europe, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

43, 78, 21, 60)

NORTH AMERICA

Continental USA and Canada

macroarea_nAmerica = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

32.6, 84, -140, -30)

Greenland

append_macroarea_by_latlong(macroarea_nAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 68, 84, -75, -8)

Alaska

39

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
append_macroarea_by_latlong(macroarea_nAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 53, 72, -169, -140)

Southern US and Florida

append_macroarea_by_latlong(macroarea_nAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 25, 35, -100, -79)

American Southwest

append_macroarea_by_latlong(macroarea_nAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 29, 35, -120, -100)

CENTRAL AMERICA

Most of Mexico and Central America

macroarea_cAmerica = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

10, 26, -120, -83)

Costa Rica and Panama

append_macroarea_by_latlong(macroarea_cAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 7, 11, -86, -76)

Northwest Mexico

append_macroarea_by_latlong(macroarea_cAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 26, 29, -104, -98)

append_macroarea_by_latlong(macroarea_cAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 22, 32, -120, -104)

#Caribbean

append_macroarea_by_latlong(macroarea_cAmerica, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 12, 25, -86, -60)

SOUTH AMERICA

macroarea_sAmerica = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

-57, 13, -82, -31)

MIDDLE EAST AND NORTH AFRICA (MENA)

North Africa

macroarea_mena = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv", 19,

37, -20, 39)

Middle East

append_macroarea_by_latlong(macroarea_mena, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

22, 41, 27, 63)

Arabian Peninsula

append_macroarea_by_latlong(macroarea_mena, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

12.5, 30, 43, 60)

append_macroarea_by_latlong(macroarea_mena, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

16.5, 30, -40, 41)

#SUBSAHARAN AFRICA

Most of Mainland Africa

40

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
macroarea_africa = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv", -37,

19, -20, 40.5)

Somalia

append_macroarea_by_latlong(macroarea_africa, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

-6, 15.5, 35, 52)

Madagascar

append_macroarea_by_latlong(macroarea_africa, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

-28, -10, 42, 53)

INDIA

India and Bangladesh

macroarea_india = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv", 4,

30, 61, 97)

Pakistan and Afghanistan

append_macroarea_by_latlong(macroarea_india, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

25, 37, 61, 80)

EAST ASIA

Most of East Asia

macroarea_eastAsia = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

28, 52, 79, 148)

Western Xinjiang

append_macroarea_by_latlong(macroarea_eastAsia, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

34, 42, 73.5, 79)

South China, Taiwan, Ryukyu

append_macroarea_by_latlong(macroarea_eastAsia, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

22, 28.5, 98, 134)

Guangdong (incl. Hainan)

append_macroarea_by_latlong(macroarea_eastAsia, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

18, 25, 108, 118)

SOUTHEAST ASIA

Most of Southeast Asia

macroarea_southeastAsia = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", -10, 18, 92, 110)

Myanmar

append_macroarea_by_latlong(macroarea_southeastAsia, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 15, 28.5, 93, 99.5)

North Vietnam

append_macroarea_by_latlong(macroarea_southeastAsia, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 16, 23, 101, 107)

Most of Austronesia

append_macroarea_by_latlong(macroarea_southeastAsia, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", -11, 8, 107, 130)

41

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
Philippines

append_macroarea_by_latlong(macroarea_southeastAsia, "WALSLanguages.csv", "phoible.csv",

"PhoibleLanguages.csv", 3, 21, 114, 128)

AUSTRALIA

Australia

macroarea_australia = new_macroarea_by_latlong("WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

-45, -11, 111, 155)

New Zealand

append_macroarea_by_latlong(macroarea_australia, "WALSLanguages.csv", "phoible.csv", "PhoibleLanguages.csv",

-48, -33, 165, 180)

Defining our relevant phoneme classes

import pandas as pd

phoible = pd.read_csv("phoible.csv")

#BASIC CATEGORIES

consonants = []

vowels = []

tones = []

#MANNERS

nasals = []

plosives = []

fricatives = []

affricates = []

approximants = []

trills = []

taps = []

clicks = []

lateralApproximants = []

lateralFricatives = []

#PLACES

labials = []

labiodentals = []

alveolars = []

dentals = []

retroflexes = []

postalveolars = []

palatals = []

velars = []

uvulars = []

laryngeals = []

42

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
glottals = []

#CONSONANT VOICING

voicedConsonants = []

voicelessConsonants = []

aspiratedConsonants = []

ejectiveConsonants = []

implosiveConsonants = []

#VOWEL PARAMETERS

voicedVowels = []

voicelessVowels = []

nasalVowels = []

#VOWEL LENGTHS

shortVowels = []

longVowels = []

for entry in phoible.index:

#BASIC CATEGORIES

#Consonants

if phoible.at[entry, "SegmentClass"] == "consonant":

if phoible.at[entry, "Phoneme"] not in consonants:

consonants.append(phoible.at[entry, "Phoneme"])

#Vowels

if phoible.at[entry, "SegmentClass"] == "vowel":

if phoible.at[entry, "Phoneme"] not in vowels:

vowels.append(phoible.at[entry, "Phoneme"])

#Tones

if phoible.at[entry, "SegmentClass"] == "tone":

if phoible.at[entry, "Phoneme"] not in tones:

tones.append(phoible.at[entry, "Phoneme"])

CONSONANT MANNERS OF ARTICULATION

#Nasal

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "nasal"] == "+":

if phoible.at[entry, "Phoneme"] not in nasals:

nasals.append(phoible.at[entry, "Phoneme"])

#Plosive

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "continuant"] == "-" and

phoible.at[entry, "lateral"] == "-" and phoible.at[entry, "delayedRelease"] == "-":

if phoible.at[entry, "Phoneme"] not in plosives:

plosives.append(phoible.at[entry, "Phoneme"])

#Fricative

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "continuant"] == "+" and

phoible.at[entry, "lateral"] == "-" and phoible.at[entry, "approximant"] == "-":

43

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
if phoible.at[entry, "Phoneme"] not in fricatives:

fricatives.append(phoible.at[entry, "Phoneme"])

#Affricate

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "continuant"] == "-" and

phoible.at[entry, "lateral"] == "-" and phoible.at[entry, "delayedRelease"] == "+":

if phoible.at[entry, "Phoneme"] not in affricates:

affricates.append(phoible.at[entry, "Phoneme"])

#Approximant

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "approximant"] == "+" and

phoible.at[entry, "trill"] == "-" and phoible.at[entry, "tap"] == "-" and phoible.at[entry, "lateral"] == "-":

if phoible.at[entry, "Phoneme"] not in approximants:

approximants.append(phoible.at[entry, "Phoneme"])

#Trill

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "trill"] == "+":

if phoible.at[entry, "Phoneme"] not in trills:

trills.append(phoible.at[entry, "Phoneme"])

#Tap

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "tap"] == "+":

if phoible.at[entry, "Phoneme"] not in taps:

taps.append(phoible.at[entry, "Phoneme"])

#Click

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "click"] == "+":

if phoible.at[entry, "Phoneme"] not in clicks:

clicks.append(phoible.at[entry, "Phoneme"])

#Lateral Approximant

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "lateral"] == "+" and phoible.at[entry,

"approximant"] == "+":

if phoible.at[entry, "Phoneme"] not in lateralApproximants:

lateralApproximants.append(phoible.at[entry, "Phoneme"])

#Lateral Fricative

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "lateral"] == "+" and phoible.at[entry,

"approximant"] == "-" and phoible.at[entry, "click"] == "-":

if phoible.at[entry, "Phoneme"] not in lateralFricatives:

lateralFricatives.append(phoible.at[entry, "Phoneme"])

#CONSONANT PLACES OF ARTICULATION

#Labial

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "labial"] == "+":

if phoible.at[entry, "Phoneme"] not in labials:

labials.append(phoible.at[entry, "Phoneme"])

#Labiodental

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "labiodental"] == "+":

if phoible.at[entry, "Phoneme"] not in labiodentals:

labiodentals.append(phoible.at[entry, "Phoneme"])

44

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
#Alveolar

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "coronal"] == "+" and phoible.at[entry,

"anterior"] == "+" and phoible.at[entry, "distributed"] == "-":

if phoible.at[entry, "Phoneme"] not in alveolars:

alveolars.append(phoible.at[entry, "Phoneme"])

#Dental

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "coronal"] == "+" and phoible.at[entry,

"anterior"] == "+" and phoible.at[entry, "distributed"] == "+":

if phoible.at[entry, "Phoneme"] not in dentals:

dentals.append(phoible.at[entry, "Phoneme"])

#Retroflex

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "coronal"] == "+" and phoible.at[entry,

"anterior"] == "-" and phoible.at[entry, "dorsal"] == "-" and phoible.at[entry, "distributed"] == "-":

if phoible.at[entry, "Phoneme"] not in retroflexes:

retroflexes.append(phoible.at[entry, "Phoneme"])

#Post-alveolar

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "coronal"] == "+" and phoible.at[entry,

"distributed"] == "+" and phoible.at[entry, "dorsal"] == "-" and phoible.at[entry, "anterior"] == "-":

if phoible.at[entry, "Phoneme"] not in postalveolars:

postalveolars.append(phoible.at[entry, "Phoneme"])

#Palatal

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "SegmentClass"] == "consonant" and

phoible.at[entry, "dorsal"] == "+" and phoible.at[entry, "front"] == "+":

if phoible.at[entry, "Phoneme"] not in palatals:

palatals.append(phoible.at[entry, "Phoneme"])

#Velar

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "SegmentClass"] == "consonant" and

phoible.at[entry, "dorsal"] == "+" and phoible.at[entry, "high"] == "+" and phoible.at[entry, "front"] == "-":

if phoible.at[entry, "Phoneme"] not in velars:

velars.append(phoible.at[entry, "Phoneme"])

#Uvular

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "dorsal"] == "+" and phoible.at[entry,

"back"] == "+":

if phoible.at[entry, "Phoneme"] not in uvulars:

uvulars.append(phoible.at[entry, "Phoneme"])

#Laryngeals? (no pharyngeals?)

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "epilaryngealSource"] == "+":

if phoible.at[entry, "Phoneme"] not in laryngeals:

laryngeals.append(phoible.at[entry, "Phoneme"])

#Glottals?

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "sonorant"] == "-" and

phoible.at[entry, "spreadGlottis"] == "+":

if phoible.at[entry, "Phoneme"] not in glottals:

45

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
glottals.append(phoible.at[entry, "Phoneme"])

#CONSONANT VOICING

#Voiced

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "periodicGlottalSource"] == "+":

if phoible.at[entry, "Phoneme"] not in voicedConsonants:

voicedConsonants.append(phoible.at[entry, "Phoneme"])

#Voiceless

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "periodicGlottalSource"] == "-":

if phoible.at[entry, "Phoneme"] not in voicelessConsonants:

voicelessConsonants.append(phoible.at[entry, "Phoneme"])

#Aspirated

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "spreadGlottis"] == "+":

if phoible.at[entry, "Phoneme"] not in aspiratedConsonants:

aspiratedConsonants.append(phoible.at[entry, "Phoneme"])

#Ejective

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "raisedLarynxEjective"] == "+":

if phoible.at[entry, "Phoneme"] not in ejectiveConsonants:

ejectiveConsonants.append(phoible.at[entry, "Phoneme"])

#Implosive

if phoible.at[entry, "SegmentClass"] == "consonant" and phoible.at[entry, "loweredLarynxImplosive"] == "+":

if phoible.at[entry, "Phoneme"] not in implosiveConsonants:

implosiveConsonants.append(phoible.at[entry, "Phoneme"])

#VOWEL TYPES

#Voiced

if phoible.at[entry, "SegmentClass"] == "vowel" and phoible.at[entry, "periodicGlottalSource"] == "+":

if phoible.at[entry, "Phoneme"] not in voicedVowels:

voicedVowels.append(phoible.at[entry, "Phoneme"])

#Voiceless

if phoible.at[entry, "SegmentClass"] == "vowel" and phoible.at[entry, "periodicGlottalSource"] == "-":

if phoible.at[entry, "Phoneme"] not in voicelessVowels:

voicelessVowels.append(phoible.at[entry, "Phoneme"])

#Nasal

if phoible.at[entry, "SegmentClass"] == "vowel" and phoible.at[entry, "nasal"] == "+":

if phoible.at[entry, "Phoneme"] not in nasalVowels:

nasalVowels.append(phoible.at[entry, "Phoneme"])

#VOWEL LENGTHS

#Short

if phoible.at[entry, "SegmentClass"] == "vowel" and phoible.at[entry, "long"] == "-":

if phoible.at[entry, "Phoneme"] not in shortVowels:

shortVowels.append(phoible.at[entry, "Phoneme"])

46

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
#Long

if phoible.at[entry, "SegmentClass"] == "vowel" and phoible.at[entry, "long"] == "+":

if phoible.at[entry, "Phoneme"] not in longVowels:

longVowels.append(phoible.at[entry, "Phoneme"])

Let's add all of these lists into one master dictionary. This is necessary for some code later on.

phonologicalCategories = {

"consonants": consonants,

"vowels": vowels,

"tones": tones,

"nasals": nasals,

"plosives": plosives,

"fricatives": fricatives,

"affricates": affricates,

"approximants": approximants,

"trills": trills,

"taps": taps,

"clicks": clicks,

"lateralApproximants": lateralApproximants,

"lateralFricatives": lateralFricatives,

"labials": labials,

"labiodentals": labiodentals,

"alveolars": alveolars,

"dentals": dentals,

"retroflexes": retroflexes,

"postalveolars": postalveolars,

"palatals": palatals,

"velars": velars,

"uvulars": uvulars,

"laryngeals": laryngeals,

"glottals": glottals,

"voicedConsonants": voicedConsonants,

"voicelessConsonants": voicelessConsonants,

"aspiratedConsonants": aspiratedConsonants,

"ejectiveConsonants": ejectiveConsonants,

"implosiveConsonants": implosiveConsonants,

"voicedVowels": voicedVowels,

"voicelessVowels": voicelessVowels,

"nasalVowels": nasalVowels,

47

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

"shortVowels": shortVowels,

"longVowels": longVowels

}

consonantManner = {"nasals",

"plosives",

"fricatives",

"affricates",

"approximants",

"trills",

"taps",

"clicks",

"lateralApproximants",

"lateralFricatives"}

consonantPlace = {"labials",

"labiodentals",

"alveolars",

"dentals",

"retroflexes",

"postalveolars",

"palatals",

"velars",

"uvulars",

"laryngeals",

"glottals"}

consonantVoicing = {"voicedConsonants",

"voicelessConsonants",

"aspiratedConsonants",

"ejectiveConsonants",

"implosiveConsonants"}

vowelType = {"voicedVowels",

"voicelessVowels",

"nasalVowels"}

vowelLength = {

"shortVowels",

"longVowels"}

Finally, let's write a function that generates a full phonology for a specified macroarea.

48

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
def phonology_from_macroarea(phoible_source, macroarea, wals_syllables, wals_rhythm):

phoible = pd.read_csv(phoible_source)

walsRhythm = pd.read_csv(wals_rhythm)

walsSyllables = pd.read_csv(wals_syllables)

Not every language in WALS is in PHOIBLE, so we will be counting how big the PHOIBLE sample actually is.

phoibleMacroarea = []

for entry in phoible.index:

language = phoible.at[entry, "ISO6393"]

if language in macroarea:

if language not in phoibleMacroarea:

phoibleMacroarea.append(language)

We will need to figure out how many languages in this macroarea have at least one phoneme in a given class.

languagesWithCategory = {}

for category in phonologicalCategories.keys():

languagesWithCategory[category] = []

We will also be counting all of the phonemes that occur in each category, for each language.

We need a blank dictionary for this. It will help us avoid repeats of the same phoneme.

phonemesInCategory = {}

for language in phoibleMacroarea:

phonemesInCategory[language] = {}

for category in phonologicalCategories.keys():

phonemesInCategory[language][category] = []

Most importantly, we will need to find the frequency of each individual phoneme (sorted by category), across

ALL languages.

phonemeFrequency = {}

for category in phonologicalCategories.keys():

phonemeFrequency[category] = {}

for phoneme in phonologicalCategories[category]:

phonemeFrequency[category][phoneme] = 0

Now, let's get into it.

for entry in phoible.index:

phoneme = phoible.at[entry, "Phoneme"]

language = phoible.at[entry, "ISO6393"]

if language in phoibleMacroarea:

for category in phonologicalCategories.keys():

if phoneme in phonologicalCategories[category]:

if phoneme not in phonemesInCategory[language][category]:

49

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
phonemesInCategory[language][category].append(phoneme)

phonemeFrequency[category][phoneme] += 1

if language not in languagesWithCategory[category]:

languagesWithCategory[category].append(language)

Next, we determine which categories are present in at least 60% of languages in this macroarea.

macroareaCategories = []

for category in phonologicalCategories.keys():

if len(languagesWithCategory[category]) >= (len(phoibleMacroarea) * 0.60):

macroareaCategories.append(category)

Out of these, we will find the average number of phonemes in that class (out of languages that have the class)

import math

categorySizes = {}

for category in macroareaCategories:

totalInCategory = 0

for language in phonemesInCategory:

totalInCategory += len(phonemesInCategory[language][category])

Phoible contains many phonemes that are attested in only a handful of dialects.

Thus, we estimate that the phoneme inventories are inflated by roughly 10%.

totalInCategory = math.floor(totalInCategory * 0.90)

averageInCategory = math.floor(totalInCategory / len(languagesWithCategory[category]))

categorySizes[category] = averageInCategory

And next, let's generate the most likely phonology that matches these restrictions.

import operator

macroareaPhonology = {}

for category in macroareaCategories:

sortedCategory = sorted(phonemeFrequency[category].items(), key=operator.itemgetter(1), reverse = True)

commonCategory = sortedCategory[:categorySizes[category]]

macroareaPhonology[category] = commonCategory

Time to clean up. We want to remove any phoneme that is not present across multiple categories.

for category in macroareaPhonology.keys():

50

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

Consonants should be present in at least one Manner, Place, and Voicing category.

if str(category) in consonantManner:

for phoneme in macroareaPhonology[category]:

phonemePlaces = 0

for place in consonantPlace:

if place in macroareaPhonology:

if phoneme in macroareaPhonology[place]:

phonemePlaces += 1

if phonemePlaces == 0:

macroareaPhonology[category].remove(phoneme)

continue

phonemeVoicing = 0

for voicing in consonantVoicing:

if voicing in macroareaPhonology:

if phoneme in macroareaPhonology[voicing]:

phonemeVoicing += 1

if phonemeVoicing == 0:

macroareaPhonology[category].remove(phoneme)

if str(category) in consonantPlace:

for phoneme in macroareaPhonology[category]:

phonemeManners = 0

for manner in consonantManner:

if manner in macroareaPhonology:

if phoneme in macroareaPhonology[manner]:

phonemeManners += 1

if phonemeManners == 0:

macroareaPhonology[category].remove(phoneme)

continue

phonemeVoicing = 0

for voicing in consonantVoicing:

51

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
if voicing in macroareaPhonology:

if phoneme in macroareaPhonology[voicing]:

phonemeVoicing += 1

if phonemeVoicing == 0:

macroareaPhonology[category].remove(phoneme)

if str(category) in consonantVoicing:

for phoneme in macroareaPhonology[category]:

phonemePlaces = 0

for place in consonantPlace:

if place in macroareaPhonology:

if phoneme in macroareaPhonology[place]:

phonemePlaces += 1

if phonemePlaces == 0:

macroareaPhonology[category].remove(phoneme)

continue

phonemeManners = 0

for manner in consonantManner:

if manner in macroareaPhonology:

if phoneme in macroareaPhonology[manner]:

phonemeManners += 1

if phonemeManners == 0:

macroareaPhonology[category].remove(phoneme)

Vowels should be present in at least one Type and Length Category.

if str(category) in vowelType:

for phoneme in macroareaPhonology[category]:

phonemeLengths = 0

for length in vowelLength:

if length in macroareaPhonology:

if phoneme in macroareaPhonology[length]:

phonemeLengths += 1

52

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
if phonemeLengths == 0:

macroareaPhonology[category].remove(phoneme)

if str(category) in vowelLength:

for phoneme in macroareaPhonology[category]:

phonemeTypes = 0

for phonemeType in vowelLength:

if phonemeType in macroareaPhonology:

if phoneme in macroareaPhonology[phonemeType]:

phonemeTypes += 1

if phonemeTypes == 0:

macroareaPhonology[category].remove(phoneme)

macroareaPhonology['consonants'] = []

for category in macroareaPhonology.keys():

if category in consonantManner or category in consonantPlace or category in consonantVoicing:

for phoneme in macroareaPhonology[category]:

if phoneme not in macroareaPhonology['consonants']:

macroareaPhonology['consonants'].append(phoneme)

macroareaPhonology['vowels'] = []

for category in macroareaPhonology.keys():

if category in vowelType or category in vowelLength:

for phoneme in macroareaPhonology[category]:

if phoneme not in macroareaPhonology['vowels']:

macroareaPhonology['vowels'].append(phoneme)

We also want to get the most common level of syllable complexity and the most common rhythm type.

#First, maximal syllable.

syllableFrequency = {"Simple": 0, "ModeratelyComplex": 0, "Complex": 0}

for entry in walsSyllables.index:

langID = walsSyllables.at[entry, "id"]

language = langID.replace("12A-",'')

if language in macroarea:

if walsSyllables.at[entry, "domainelement_pk"] == 56:

syllableFrequency["Complex"] += 1

elif walsSyllables.at[entry, "domainelement_pk"] == 55:

53

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
syllableFrequency["ModeratelyComplex"] += 1

elif walsSyllables.at[entry, "domainelement_pk"] == 54:

syllableFrequency["Simple"] += 1

averageSyllable = max(syllableFrequency, key=syllableFrequency.get)

macroareaPhonology["syllableStructure"] = averageSyllable

#Second, rhythm type.

rhythmFrequency = {"Trochaic": 0, "Iambic": 0, "Dual": 0, "None": 0}

for entry in walsRhythm.index:

langID = walsRhythm.at[entry, "id"]

language = langID.replace("17A-",'')

if language in macroarea:

if walsRhythm.at[entry, "domainelement_pk"] == 82:

rhythmFrequency["Trochaic"] += 1

elif walsRhythm.at[entry, "domainelement_pk"] == 83:

rhythmFrequency["Iambic"] += 1

elif walsRhythm.at[entry, "domainelement_pk"] == 84:

rhythmFrequency["Dual"] += 1

elif walsRhythm.at[entry, "domainelement_pk"] == 86:

rhythmFrequency["None"] += 1

averageRhythm = max(rhythmFrequency, key=rhythmFrequency.get)

macroareaPhonology["rhythm"] = averageRhythm

return macroareaPhonology

europePhonology = phonology_from_macroarea("phoible.csv", macroarea_europe, "SyllableStructure.csv",

"RhythmTypes.csv")

nAmericaPhonology = phonology_from_macroarea("phoible.csv", macroarea_nAmerica, "SyllableStructure.csv",

"RhythmTypes.csv")

cAmericaPhonology = phonology_from_macroarea("phoible.csv", macroarea_cAmerica, "SyllableStructure.csv",

"RhythmTypes.csv")

sAmericaPhonology = phonology_from_macroarea("phoible.csv", macroarea_sAmerica, "SyllableStructure.csv",

"RhythmTypes.csv")

menaPhonology = phonology_from_macroarea("phoible.csv", macroarea_mena, "SyllableStructure.csv",

"RhythmTypes.csv")

africaPhonology = phonology_from_macroarea("phoible.csv", macroarea_africa, "SyllableStructure.csv",

"RhythmTypes.csv")

indiaPhonology = phonology_from_macroarea("phoible.csv", macroarea_india, "SyllableStructure.csv",

"RhythmTypes.csv")

australiaPhonology = phonology_from_macroarea("phoible.csv", macroarea_australia, "SyllableStructure.csv",

"RhythmTypes.csv")

54

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
eastAsiaPhonology = phonology_from_macroarea("phoible.csv", macroarea_eastAsia, "SyllableStructure.csv",

"RhythmTypes.csv")

southeastAsiaPhonology = phonology_from_macroarea("phoible.csv", macroarea_southeastAsia,

"SyllableStructure.csv", "RhythmTypes.csv")

macroareaPhonologies = [europePhonology, nAmericaPhonology, cAmericaPhonology, sAmericaPhonology,

menaPhonology, africaPhonology, indiaPhonology, eastAsiaPhonology, southeastAsiaPhonology,

australiaPhonology]

For each phonology, we want to generate a list of phonemes that are emblematic of that region.

A phoneme is considered emblematic if it only occurs in, at most, one other macroarea.

def identifyEmblematicPhonemes(macroareaPhonologies):

import re

emblematicPhonemes = []

for phonology in macroareaPhonologies:

phonology['emblematic'] = []

for category in phonology:

if category == 'emblematic' or category == 'syllableStructure' or category == 'rhythm':

continue

for entry in phonology[category]:

pattern = "'(.*?)'"

phoneme = re.search(pattern, str(entry)).group(1)

phonemeFreq = 0

for otherPhonology in macroareaPhonologies:

if otherPhonology is not phonology:

for category in otherPhonology:

if category == 'emblematic' or category == 'syllableStructure' or category == 'rhythm':

continue

for otherEntry in otherPhonology[category]:

otherPhoneme = re.search(pattern, str(otherEntry)).group(1)

if otherPhoneme == phoneme:

phonemeFreq += 1

55

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

if phonemeFreq <= 1:

if entry not in phonology['emblematic']:

phonology['emblematic'].append(entry)

for emblem in phonology['emblematic']:

occurrence = 0

for manner in consonantManner:

if manner in phonology.keys():

if emblem in phonology[manner]:

occurrence += 1

if emblem in phonology['vowels']:

occurrence += 1

if occurrence == 0:

phonology['emblematic'].remove(emblem)

identifyEmblematicPhonemes(macroareaPhonologies)

Before we can generate a string of random syllables, we have to define the sonority hierarchy.

sonority = {'clicks': 0, 'plosives': 0, 'affricates': 0, 'fricatives': 0, 'lateralFricatives': 0,

'nasals': 3, 'lateralApproximants': 3, 'trills': 3, 'taps': 3, 'approximants': 4}

This function will generate a string of X syllables that conform to the phonological characteristics of the

macroarea.

import random

import re

def string_from_phonology(phonology, numSyllables):

syllableList = []

string = ""

syllableStructure = phonology['syllableStructure']

rhythm = phonology['rhythm']

def generate_simple_syllable():

newSyllable = ""

validManners = []

56

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

for category in list(phonology.keys()):

if category in consonantManner:

if len(phonology[category]) > 0:

validManners.append(str(category))

validManners.append('None')

while True:

manner = random.choice(validManners)

if manner in consonantManner:

consonant = str(random.choice(phonology[manner]))

pattern = "'(.*?)'"

onset = re.search(pattern, consonant).group(1)

break

elif manner == 'None':

onset = ''

break

else:

continue

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

newSyllable = onset + nucleus + tone + "."

return newSyllable

def generate_modcomplex_syllable():

newSyllable = ""

validManners = []

57

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
for category in list(phonology.keys()):

if category in consonantManner:

if len(phonology[category]) > 0:

validManners.append(str(category))

validManners.append('None')

validSyllables = ['CVC', 'CCV']

chosenSyllable = random.choice(validSyllables)

if chosenSyllable == 'CVC':

onset = ""

while True:

manner = random.choice(validManners)

if manner in consonantManner:

consonant = str(random.choice(phonology[manner]))

pattern = "'(.*?)'"

onset = re.search(pattern, consonant).group(1)

break

elif manner == 'None':

onset = ""

break

else:

continue

coda = ""

while True:

manner = random.choice(validManners)

if manner in consonantManner:

consonant = str(random.choice(phonology[manner]))

pattern = "'(.*?)'"

coda = re.search(pattern, consonant).group(1)

break

elif manner == 'None':

coda = ""

break

else:

continue

58

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

newSyllable = onset + nucleus + tone + coda + "."

if chosenSyllable == 'CCV':

firstOnset = ""

while True:

firstManner = random.choice(validManners)

if firstManner in consonantManner:

consonant = str(random.choice(phonology[firstManner]))

pattern = "'(.*?)'"

firstOnset = re.search(pattern, consonant).group(1)

break

elif firstManner == 'None':

firstOnset = ""

break

else:

continue

secondOnset = ""

while True:

secondManner = random.choice(validManners)

if secondManner in consonantManner:

if firstManner in consonantManner:

if sonority[secondManner] <= sonority[firstManner]:

secondOnset = ""

59

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

break

elif secondManner == 'None':

secondOnset = ""

break

else:

continue

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

newSyllable = firstOnset + secondOnset + nucleus + tone + "."

return newSyllable

def generate_complex_syllable():

newSyllable = ""

validManners = []

for category in list(phonology.keys()):

if category in consonantManner:

if len(phonology[category]) > 0:

validManners.append(str(category))

60

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

validManners.append('None')

validSyllables = ['CCCVCC', 'CCVCC', 'CCVC', 'CVCC', 'CVC', 'CCV']

chosenSyllable = random.choice(validSyllables)

if chosenSyllable == 'CCCVCC':

firstOnset = ""

while True:

firstManner = random.choice(validManners)

if firstManner in consonantManner:

consonant = str(random.choice(phonology[firstManner]))

pattern = "'(.*?)'"

firstOnset = re.search(pattern, consonant).group(1)

break

elif firstManner == 'None':

firstOnset = ""

break

else:

continue

secondOnset = ""

while True:

secondManner = random.choice(validManners)

if secondManner in consonantManner:

if firstManner in consonantManner:

if sonority[secondManner] <= sonority[firstManner]:

secondOnset = ""

secondManner = "" # This is to prevent the first and third manner from being identical in rare cases.

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

61

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
break

elif secondManner == 'None':

secondOnset = ""

break

else:

continue

thirdOnset = ""

while True:

thirdManner = random.choice(validManners)

if thirdManner in consonantManner:

if secondManner in consonantManner:

if sonority[thirdManner] <= sonority[secondManner]:

thirdOnset = ""

else:

consonant = str(random.choice(phonology[thirdManner]))

pattern = "'(.*?)'"

thirdOnset = re.search(pattern, consonant).group(1)

elif firstManner in consonantManner:

if sonority[thirdManner] <= sonority[firstManner]:

thirdOnset = ""

else:

consonant = str(random.choice(phonology[thirdManner]))

pattern = "'(.*?)'"

thirdOnset = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[thirdManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

break

elif thirdManner == 'None':

secondOnset = ""

break

else:

continue

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

62

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

ultCoda = ""

while True:

ultManner = random.choice(validManners)

if ultManner in consonantManner:

consonant = str(random.choice(phonology[ultManner]))

pattern = "'(.*?)'"

ultCoda = re.search(pattern, consonant).group(1)

break

elif ultManner == 'None':

ultCoda = ""

break

else:

continue

penultCoda = ""

while True:

penultManner = random.choice(validManners)

if penultManner in consonantManner:

if ultManner in consonantManner:

if sonority[penultManner] <= sonority[ultManner]:

penultCoda = ""

else:

consonant = str(random.choice(phonology[penultManner]))

pattern = "'(.*?)'"

penultCoda = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[penultManner]))

pattern = "'(.*?)'"

penultCoda = re.search(pattern, consonant).group(1)

63

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
break

elif penultManner == 'None':

penultCoda = ""

break

else:

continue

newSyllable = firstOnset + secondOnset + thirdOnset + nucleus + tone+ penultCoda + ultCoda + "."

if chosenSyllable == 'CCVCC':

firstOnset = ""

while True:

firstManner = random.choice(validManners)

if firstManner in consonantManner:

consonant = str(random.choice(phonology[firstManner]))

pattern = "'(.*?)'"

firstOnset = re.search(pattern, consonant).group(1)

break

elif firstManner == 'None':

firstOnset = ""

break

else:

continue

secondOnset = ""

while True:

secondManner = random.choice(validManners)

if secondManner in consonantManner:

if firstManner in consonantManner:

if sonority[secondManner] <= sonority[firstManner]:

secondOnset = ""

secondManner = "" # This is to prevent the first and third manner from being identical in rare cases.

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[secondManner]))

64

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

break

elif secondManner == 'None':

secondOnset = ""

break

else:

continue

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

ultCoda = ""

while True:

ultManner = random.choice(validManners)

if ultManner in consonantManner:

consonant = str(random.choice(phonology[ultManner]))

pattern = "'(.*?)'"

ultCoda = re.search(pattern, consonant).group(1)

break

elif ultManner == 'None':

ultCoda = ""

break

else:

continue

penultCoda = ""

while True:

penultManner = random.choice(validManners)

if penultManner in consonantManner:

if ultManner in consonantManner:

65

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
if sonority[penultManner] <= sonority[ultManner]:

penultCoda = ""

else:

consonant = str(random.choice(phonology[penultManner]))

pattern = "'(.*?)'"

penultCoda = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[penultManner]))

pattern = "'(.*?)'"

penultCoda = re.search(pattern, consonant).group(1)

break

elif penultManner == 'None':

penultCoda = ""

break

else:

continue

newSyllable = firstOnset + secondOnset + nucleus + tone + penultCoda + ultCoda + "."

if chosenSyllable == 'CCVC':

firstOnset = ""

while True:

firstManner = random.choice(validManners)

if firstManner in consonantManner:

consonant = str(random.choice(phonology[firstManner]))

pattern = "'(.*?)'"

firstOnset = re.search(pattern, consonant).group(1)

break

elif firstManner == 'None':

firstOnset = ""

break

else:

continue

secondOnset = ""

while True:

secondManner = random.choice(validManners)

66

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
if secondManner in consonantManner:

if firstManner in consonantManner:

if sonority[secondManner] <= sonority[firstManner]:

secondOnset = ""

secondManner = "" # This is to prevent the first and third manner from being identical in rare cases.

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

break

elif secondManner == 'None':

secondOnset = ""

break

else:

continue

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

ultCoda = ""

while True:

ultManner = random.choice(validManners)

if ultManner in consonantManner:

consonant = str(random.choice(phonology[ultManner]))

pattern = "'(.*?)'"

ultCoda = re.search(pattern, consonant).group(1)

break

67

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
elif ultManner == 'None':

ultCoda = ""

break

else:

continue

newSyllable = firstOnset + secondOnset + nucleus + tone + ultCoda + "."

if chosenSyllable == 'CVCC':

firstOnset = ""

while True:

firstManner = random.choice(validManners)

if firstManner in consonantManner:

consonant = str(random.choice(phonology[firstManner]))

pattern = "'(.*?)'"

firstOnset = re.search(pattern, consonant).group(1)

break

elif firstManner == 'None':

firstOnset = ""

break

else:

continue

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

ultCoda = ""

while True:

ultManner = random.choice(validManners)

if ultManner in consonantManner:

consonant = str(random.choice(phonology[ultManner]))

68

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
pattern = "'(.*?)'"

ultCoda = re.search(pattern, consonant).group(1)

break

elif ultManner == 'None':

ultCoda = ""

break

else:

continue

penultCoda = ""

while True:

penultManner = random.choice(validManners)

if penultManner in consonantManner:

if ultManner in consonantManner:

if sonority[penultManner] <= sonority[ultManner]:

penultCoda = ""

else:

consonant = str(random.choice(phonology[penultManner]))

pattern = "'(.*?)'"

penultCoda = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[penultManner]))

pattern = "'(.*?)'"

penultCoda = re.search(pattern, consonant).group(1)

break

elif penultManner == 'None':

penultCoda = ""

break

else:

continue

newSyllable = firstOnset + nucleus + tone + penultCoda + ultCoda + "."

if chosenSyllable == 'CVC':

onset = ""

while True:

manner = random.choice(validManners)

if manner in consonantManner:

69

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
consonant = str(random.choice(phonology[manner]))

pattern = "'(.*?)'"

onset = re.search(pattern, consonant).group(1)

break

elif manner == 'None':

onset = ""

break

else:

continue

coda = ""

while True:

manner = random.choice(validManners)

if manner in consonantManner:

consonant = str(random.choice(phonology[manner]))

pattern = "'(.*?)'"

coda = re.search(pattern, consonant).group(1)

break

elif manner == 'None':

coda = ""

break

else:

continue

vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

newSyllable = onset + nucleus + tone + coda + "."

if chosenSyllable == 'CCV':

70

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

firstOnset = ""

while True:

firstManner = random.choice(validManners)

if firstManner in consonantManner:

consonant = str(random.choice(phonology[firstManner]))

pattern = "'(.*?)'"

firstOnset = re.search(pattern, consonant).group(1)

break

elif firstManner == 'None':

firstOnset = ""

break

else:

continue

secondOnset = ""

while True:

secondManner = random.choice(validManners)

if secondManner in consonantManner:

if firstManner in consonantManner:

if sonority[secondManner] <= sonority[firstManner]:

secondOnset = ""

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

else:

consonant = str(random.choice(phonology[secondManner]))

pattern = "'(.*?)'"

secondOnset = re.search(pattern, consonant).group(1)

break

elif secondManner == 'None':

secondOnset = ""

break

else:

continue

71

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
vowel = str(random.choice(phonology['vowels']))

pattern = "'(.*?)'"

nucleus = re.search(pattern, vowel).group(1)

if 'tones' in phonology:

tone = str(random.choice(phonology['tones']))

pattern = "'(.*?)'"

tone = re.search(pattern, tone).group(1)

else:

tone = ''

newSyllable = firstOnset + secondOnset + nucleus + tone + "."

return newSyllable

if phonology['syllableStructure'] == 'Simple':

while True:

syllableList = []

for x in range(numSyllables):

syllable = generate_simple_syllable()

syllableList.append(syllable)

containsAllPhonemes = 'True'

for category in phonology.keys():

if category == 'consonants' or category == 'vowels' or category == 'tones': # changed from in

ConsonantManner

for item in phonology[category]:

pattern = "'(.*?)'"

t = str(item)

phoneme = re.search(pattern, t).group(1)

if phoneme not in ' '.join(syllableList):

containsAllPhonemes = 'False'

containsEmblematicTwice = 'True'

for item in phonology['emblematic']:

emblematicCount = 0

pattern = "'(.*?)'"

t = str(item)

phoneme = re.search(pattern, t).group(1)

emblematicCount = ' '.join(syllableList).count(phoneme)

if emblematicCount < 2:

containsEmblematicTwice = 'False'

72

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis
break

else:

continue

if containsAllPhonemes == 'False':

continue

elif containsEmblematicTwice == 'False':

continue

else:

break

if phonology['syllableStructure'] == 'ModeratelyComplex':

while True:

syllableList = []

for x in range(numSyllables):

syllable = generate_modcomplex_syllable()

syllableList.append(syllable)

containsAllPhonemes = 'True'

for category in phonology.keys():

if category in consonantManner or category == 'vowels' or category == 'tones':

for item in phonology[category]:

pattern = "'(.*?)'"

t = str(item)

phoneme = re.search(pattern, t).group(1)

if phoneme not in ' '.join(syllableList):

containsAllPhonemes = 'False'

containsEmblematicTwice = 'True'

for item in phonology['emblematic']:

emblematicCount = 0

pattern = "'(.*?)'"

t = str(item)

phoneme = re.search(pattern, t).group(1)

emblematicCount = ' '.join(syllableList).count(phoneme)

if emblematicCount < 2:

containsEmblematicTwice = 'False'

break

else:

continue

73

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

if containsAllPhonemes == 'False':

continue

elif containsEmblematicTwice == 'False':

continue

else:

break

if phonology['syllableStructure'] == 'Complex':

while True:

syllableList = []

for x in range(numSyllables):

syllable = generate_complex_syllable()

syllableList.append(syllable)

containsAllPhonemes = 'True'

for category in phonology.keys():

if category in consonantManner or category == 'vowels' or category == 'tones':

for item in phonology[category]:

pattern = "'(.*?)'"

t = str(item)

phoneme = re.search(pattern, t).group(1)

if phoneme not in ' '.join(syllableList):

containsAllPhonemes = 'False'

containsEmblematicTwice = 'True'

for item in phonology['emblematic']:

emblematicCount = 0

pattern = "'(.*?)'"

t = str(item)

phoneme = re.search(pattern, t).group(1)

emblematicCount = ' '.join(syllableList).count(phoneme)

if emblematicCount < 2:

containsEmblematicTwice = 'False'

break

else:

continue

if containsAllPhonemes == 'False':

continue

74

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

elif containsEmblematicTwice == 'False':

continue

else:

break

syllableCount = 0

while True:

word = []

wordLength = random.randint(1, 2)

for i in range(wordLength):

word.append(syllableList[syllableCount])

syllableCount += 1

if syllableCount == numSyllables:

break

if wordLength == 1:

letters = list(word[0])

letters.insert(0, 'ˈ')
word[0] = ''.join(letters)

elif wordLength == 2:

if phonology['rhythm'] == 'Trochaic':

letters = list(word[0])

letters.insert(0, 'ˈ')
word[0] = ''.join(letters)

if phonology['rhythm'] == 'Iambic':

letters = list(word[1])

letters.insert(0, 'ˈ')
word[1] = ''.join(letters)

if phonology['rhythm'] == 'Dual' or phonology['rhythm'] == 'None':

stress = random.randint(0, 1)

letters = list(word[stress])

letters.insert(0, 'ˈ')
word[stress] = ''.join(letters)

75

Zion Smith

Marijn van ‘t Veer

Bachelor’s Thesis

word = ''.join(word)

string += word

string += ' '

if syllableCount == numSyllables:

break

else:

continue

words = string.split()

wordCount = 0

while True:

sentenceLength = random.randint(3, 4)

wordCount += sentenceLength

if wordCount > len(words):

string = ' '.join(words)

break

INSERT CODE FOR RHYTHM HERE

else:

words.insert(wordCount, '\n')

wordCount += 1

continue

return string

Now, just use print(string_from_phonology(phonology, X)) and view the results!

76

