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It is still unclear why children diagnosed with developmental language disorder 
(DLD) experience so many difficulties acquiring their native language. The 
research described in this dissertation investigated whether differences in the 
ease with which children acquire language are related to children’s sensitivity to 
statistical regularities (i.e. statistical learning) in the input. The following questions 
were addressed: (1) can we detect differences in statistical learning at the group 
and individual level (this concerns the measurement of statistical learning), (2) are 
individual differences in statistical learning associated with language proficiency 
and (3) can the language difficulties observed in children with DLD be explained 
by a statistical learning deficit that is observable across modalities, domains and 
dependency types?

With four empirical studies and two meta-analyses we aimed to answer these 
questions. Using online and offline measures of learning, we found evidence for 
statistical learning at the group level. Using these measures, we could not detect 
learning at the individual level (question 1). This means that we cannot draw a 
conclusion as to whether individual differences in statistical learning do (or do 
not) correlate with language proficiency (question 2). As for our third question: 
our results indicate that children with DLD have an auditory verbal statistical 
learning deficit. We cannot conclude that they have (or do not have) a statistical 
learning deficit outside this domain. The presence of a statistical learning deficit in 
children with DLD may thus depend on several factors, including the domain and 
modality in which learning is tested.
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Prologue 
 
When asked to explain the research described in this book, I usually quote a 
passage from Dave Eggers’ roman The Circle. In this passage, the main character 
of the book (Mae) meets a little boy, around three years old, called Michael. 
Crucially, Michael wears a silver watch that recognizes, categorizes and counts 
the words spoken to him. It is explained to Mae that this counting of words is 
important as “studies show that kids need to hear at least 30.000 words a day” 
(Eggers, 2013, p.338). Though I never verified the truth of these 30.000 words, 
the example nicely illustrates that it is common knowledge that children need 
language input to learn their language from. Different views exist on what kind of 
learning mechanism children use to learn language from the input, however. One 
perspective is that already during the earliest stages of language development, 
children unconsciously detect and extract regularities (statistical patterns) from 
their language input that reflect the possible sound combinations, words and 
grammar of their native language. The research described in this book aims to 
investigate if children indeed detect such regularities and whether the ability to do 
so is associated with language proficiency.
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Chapter 1 
1.1 General introduction 
 
To become a proficient language user, young children need to learn how their 
language is structured at the sound, word and sentence level. The language input 
that children receive may facilitate this process as the input is rich in terms of 
statistical regularities that reflect the linguistic structure (Reali & Christiansen, 
2005). For example, in the English present tense, singular subjects frequently co-
occur with [s] marking on the verb, whereas such marking is absent in the case of 
plural subjects (subject verb-agreement: the child walks versus the children walk). 
As children grow older, they receive more linguistic input and will thus encounter 
more instances of these singular subject plus verb-plus-[s]. Importantly, the 
singular subject + [s] marking is constant whereas the verb varies (e.g., he walks, 
he talks, he eats). This variability in verbs makes the marking more salient and 
easier to detect. One theory on first language acquisition that has been proposed 
is that children have a general (non-language-specific) cognitive capacity that is 
sensitive to such structural regularities in a variety of input. This cognitive ability 
is referred to as “statistical learning” (Saffran and Kirkham, 2018).  

Children are likely to be different in their sensitivity to statistical 
regularities in the environment. For some children it may be more difficult to 
detect statistical regularities, and these children may need more or different input 
(Plante & Gómez, 2018) than other children who have fewer difficulties detecting 
the regularities. In this dissertation it is investigated (1) whether we can detect 
such differences in statistical learning ability at the group and individual level 
(this concerns the measurement of statistical learning), (2) whether these 
individual differences in statistical learning ability correlate with language 
proficiency and (3) whether the problems observed in children with a language 
disorder (developmental language disorder, explained later on) can be explained 
by a statistical learning deficit (as for example proposed by: Evans, Saffran, & 
Robbe-Torres, 2009; Hsu & Bishop, 2014a; Obeid, Brooks, Gillespie-Lynch, & 
Lum, 2016; Wijnen, 2013).  

A central debate within the study on statistical learning and its relation to 
language proficiency concerns the specificity of the mechanism. In the examples 
given so far, the focus was on linguistic input. However, structure is not unique 
to human language. For example, music and bird songs also contain structural 
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regularities (Rohrmeier, Zuidema, Wiggins, & Scharff, 2015). Therefore, it may 
well be the case that children use a statistical learning mechanism that is sensitive 
to regularities across domains (verbal, nonverbal) and modalities (auditory, 
visual, visuomotor) rather than a language-specific statistical learning mechanism 
in language learning. As the studies reported in this dissertation investigate 
statistical learning and the presence of a statistical learning deficit across domains 
and modalities (see Outline and research questions), this dissertation contributes 
to the scientific debate on the specificity of statistical learning and the statistical 
learning deficit (for a recent review discussing the specificity of statistical 
learning, see Frost, Armstrong, & Christiansen, 2019). 
  
1.1.1 Statistical learning as a mechanism involved in language acquisition 
Central to the studies described in this dissertation is the hypothesis that children 
learn certain aspects of language with a general cognitive (non-language-specific) 
learning mechanism that is capable of detecting statistical patterns in a broad 
variety of stimuli. In other words, children may learn language with a mechanism 
that also supports learning of nonverbal structure. Not all theories of language 
acquisition, however, agree that such a general non-language-specific mechanism 
plays a critical role in language learning. It has also been argued that children 
learn language via devices that are specialized in doing so (e.g., Chomsky, 1965; 
Eimas, Siqueland, Jusczyk, & Vigorito, 1971; Lenneberg, 1967; Pinker, 1994). 
Chomsky (1965) for example, argues that children are born with a set of innately 
specified possible linguistic structures and that children may use a specialized 
“language acquisition device” to select the appropriate set of structures, i.e., those 
that represent the grammar of their native language, from the linguistic input. 
Central in Chomsky’s reasoning that children must have innately specified 
linguistic structures is the “poverty of the stimulus” argument: children cannot 
induce (or generalize) language structure solely from their input, because the input 
they receive is restricted. That is, certain linguistic structures that do exist in the 
child’s language may never (or hardly ever) occur in the child’s input, making it 
impossible to learn these structures via induction. Over the past few years, several 
experimental, computational and corpus studies provided evidence against the 
poverty of the stimulus argument (Pullum & Scholz, 2002). These studies showed 
that children can use the rich statistical structure of their linguistic input to make 
inferences about the acceptability of structures that they have not encountered in 
their input yet (e.g., Reali & Christiansen, 2009 argue that this is the case for 
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auxiliary fronting of polar interrogatives). At this point it may be good to highlight 
that both approaches to language acquisition acknowledge that input plays a 
significant role in learning language (Lidz & Gagliardi, 2015). The approaches 
differ as to (a) the linguistic nature of the learning mechanism involved in 
language learning and (b) the amount of innately specified (abstract) linguistic 
knowledge. 
 That infants are sensitive to statistical regularities in the linguistic input 
was first shown by Saffran, Newport and Aslin (1996). In this study, 8-month-old 
infants were able to use statistical information (i.e. transitional probabilities) to 
discover word boundaries in a continuous stream of auditorily presented nonsense 
syllables. This type of statistical learning is often referred to as sequential 
statistical learning, that is sensitivity to the ordering or co-occurrence of elements 
(segments, syllables, morphemes, words) over time. People are also sensitive to 
other types of statistical information, such as distributional cues and cross-
situational dependencies. Evidence for infants’ sensitivity to distributional 
statistics comes (amongst others) from Maye, Werker and Gerken (2002). In their 
study Maye et al. (2002) exposed infants to novel speech sounds. The speech 
sounds were arranged according to either a bimodal distribution or a unimodal 
distribution. It was hypothesized that if the infants were sensitive to the 
distributional statistics, the infants from the bimodal condition should form two-
category representations (they should distinguish [d] and [t]) whereas the infants 
from the unimodal condition should form one-category representations. Maye et 
al. (2002) concluded that this hypothesis was confirmed and thus that infants are 
sensitive to distributional statistics. The third type of statistical learning, cross-
situational statistical learning is often investigated in the context of lexical 
learning. For example, Yu and Smith (2007) and Smith and Yu (2008) showed 
that both adults (Yu a& Smith, 2007) and infants (Smith & Yu, 2008) compute 
distributional statistics across the co-occurrence of words and referents over 
multiple trials. That is, in cross-situational statistical learning studies participants 
are presented with individual trials that consist of a label and multiple pictures 
representing possible referents. Based on one trial it is not possible to connect the 
label with a referent. Across trials the specific word-referent mappings are 
consistent; a word of a specific word-referent pair is only used if the accompanied 
referent is also present. Therefore, participants can learn the specific word-
referent mappings via a mechanism that is sensitive to the co-occurrences of 
specific word-referent pairs across trials. All studies in the present dissertation 
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focus on sequential statistical learning, and therefore when the term statistical 
learning is used, it refers to sequential statistical learning (unless explicitly 
specified differently).  
 As mentioned before, statistical regularities also occur outside the 
linguistic domain and studies have shown that people are sensitive to regularities 
in these other domains as well. For example, Saffran, Johnson, Newport and Aslin 
(1999) showed that, using 12 tones from a musical octave, 8-month-old infants 
discriminated statistically coherent tone-triplets from slightly less coherent tone-
triplets. Beyond the auditory modality, sensitivity to nonverbal sequences in the 
visuomotor domain is commonly observed with the serial reaction time task (e.g., 
Meulemans, van der Linden, & Perruchet, 1998; Nissen & Bullemer, 1987; 
Thomas & Nelson, 2001). In the visual domain, there is evidence that infants, 
children and adults use transitional probabilities of occurring visual shapes 
(abstract shapes or cartoon drawings) to form boundaries between pairs or triplets 
of visual elements (e.g., Arciuli & Simpson, 2011; Fiser & Aslin, 2002; Kirkham, 
Slemmer, & Johnson, 2002; Turk-Browne, Jungé, & Scholl, 2005). 
 It has also been shown that sensitivity to these regularities, both in the 
verbal and nonverbal domain, is associated with language proficiency. This 
evidence comes from two different sources. Firstly, children with atypical 
language development (dyslexia; developmental language disorder) may have a 
statistical learning deficit (for a review see Arciuli & Conway, 2018). Secondly, 
at the individual level there is evidence that statistical learning ability correlates 
with language proficiency. That is, better statistical learners have larger 
vocabularies (Spencer, Kaschak, Jones, & Lonigan, 2015; Shafto, Conway, Field, 
& Houston, 2013) and score better on tasks that tap into grammatical proficiency 
(Hamrick, Lum, & Ullman, 2018), syntactic processing (Kidd, 2012; Kidd & 
Arciuli, 2016; Wilson et al., 2018) and reading (Arciuli & Simpson, 2012; 
Hedenius et al., 2013; Steacy et al., 2019; Vakil, Lowe, & Goldfus, 2015; van der 
Kleij, Groen, Segers, & Verhoeven, 2018; von Koss Torkildsen, Arciuli, & Wie, 
2019). It is important to note, however, that different research groups have raised 
their concerns about the existence of a publication bias in the literature on 
statistical learning deficits (Schmalz, Altoè, & Mulatti, 2017; van Witteloostuijn, 
Boersma, Wijnen, & Rispens, 2017) and on the use of psychometrically weak 
measures of individual measures of statistical learning (Arnon, 2019; Siegelman, 
Bogaerts, & Frost, 2017; West, Vadillo, Shanks, & Hulme, 2017). These issues 
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may inflate the conclusions drawn so far and are also repeatedly discussed in the 
individual chapters of this dissertation.  
 
1.1.2 Developmental language disorder and the statistical learning deficit 
hypothesis 
Central to this dissertation are children with developmental language disorder 
(DLD). These children experience difficulties with language across multiple areas 
such as the lexicon, morphology, (morpho)syntax, discourse, reading and spelling 
(Leonard, 2014; McArthur, Hogben, Edwards, Heath, & Mengler, 2000), and 
their language problems frequently co-occur with deficits in attention, working 
memory (Ebert & Kohnert, 2011; Montgomery, Evans, & Gilliam, 2018), and 
motor skills (Hill, 2001). Despite large heterogeneity in problems observed across 
children with DLD, almost all children with DLD exhibit problems with 
morphosyntax and phonological processing. Problems in these areas are therefore 
seen as clinical markers of the disorder (Leonard, 2014). Another criterion is that 
the problems observed in children with DLD cannot be attributed to neurological 
damage, hearing impairment, intellectual disability or unfavourable psycho-
social/educational conditions. 
 One of the hypotheses on the origins of DLD states that the disorder may 
be the result of a statistical learning deficit (Evans et al., 2009; Hsu & Bishop, 
2014a; Obeid et al., 2016; Wijnen, 2013). This hypothesis builds on two 
observations: the first one being that children with DLD often exhibit problems 
with linguistic aspects that require sensitivity to structural dependencies (e.g., 
English subject–verb agreement could also be described as a nonadjacent 
dependency between third person singular and verb-plus-[s] marking). The 
second observation concerns the comorbidity with problems in nonverbal areas. 
Following this, it has been argued that the linguistic problems observed in DLD 
may stem from nonverbal cognitive processing deficits that are thought to be 
related to language acquisition, amongst which is statistical learning (but see also 
various theories that claim for language-specific origins of the disorder: e.g., 
Grammatical Agreement Deficit Account, Clashen, 1989; Extended Optional 
Infinitive Account, Rice, Wexler, & Cleave, 1995).  

The statistical learning deficit hypothesis is related to another general 
(non-language-specific) learning deficit hypothesis, namely the procedural 
learning deficit hypothesis (Ullman & Pierpont, 2005; Ullman, Earle, Walenksi, 
& Janacsek, 2020). The procedural learning deficit hypothesis states that the 
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profile of language problems observed in children with DLD reflects a 
dissociation of children’s functioning of the procedural learning system and their 
functioning of the declarative learning system. These two learning systems are 
not specific to language, but may be involved in learning rule-based aspects of 
language (procedural learning) and non-rule-based aspects of language 
(declarative learning). According to the procedural learning deficit hypothesis, 
children with DLD have a deficit in their procedural learning system that may 
explain their difficulties with sequenced aspects of language (e.g., grammar). By 
contrast, declarative learning is argued to be intact in this group of children and 
therefore, those language aspects that are learned via this system (e.g., word 
knowledge, irregular grammar) are relatively spared in children with DLD.  

Different from the procedural learning deficit hypothesis, the statistical 
learning deficit hypothesis does not explicitly differentiate between procedural 
and declarative aspects of language learning. Statistical learning accounts assume 
that all aspects of language are learned via statistical computations. Different 
aspects of language may require different types statistical computations 
(sequential, distributional, cross-situational), though. Children with DLD may 
have difficulties with all these different types of computations, which may explain 
why the observed problems in this group of children range from problems with 
vocabulary building to establishing grammatical relations.  
 
1.1.3 Measuring statistical learning 
In the laboratory, participants’ sensitivity to differences in sequential structure is 
commonly tested by exposing participants to structured stimuli and then 
measuring their knowledge of the structure. As an example, in the auditory verbal 
domain, participants can be exposed to an artificial language that may consist of 
a continuous stream of nonsense syllables from which words can be detected on 
the basis of differences in transitional probabilities between syllables within 
words and syllables across word boundaries (e.g., the string bupadadutaba 
consists of the two words: bupada and dutaba; Saffran, Newport, Aslin, Tunick, 
& Barrueco, 1997). Alternatively, the artificial language may consist of a string 
of nonsense words that are defined by (non)adjacent dependencies between 
specific elements within a string. For instance, in the utterances tep kasi lut, tep 
wadim lut, tep palti lut, the first element (e.g., tep) and the third element (e.g., lut) 
form a nonadjacent dependency and thus the transitional probability between 
these two elements is 1 whereas the transition probability between the first and 
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second word of the string (e.g., tep and wadim) and between the second word and 
third word of the string (e.g., wadim and lut) is lower (Gómez, 2002). Participants’ 
sensitivity to the regularities can be measured via online measures of learning and 
offline measures of learning. Online measures of learning, such as response times, 
are taken during the exposure phase, whereas offline measures, such as 
grammaticality judgments, are taken after learning took place. As will become 
clear from the individual chapters in this dissertation, it is still a matter of debate, 
which criteria such measures should meet, and what constitutes the best online 
measure and the best offline measure of learning. 
 
1.1.4 Outline and research questions 
The present dissertation aims to provide an in-depth overview of statistical 
learning and its relation to language proficiency in children with and without DLD 
as such overviews are scarce (Erickson & Thiessen, 2015). The studies described 
in chapters 2 to 6 of this dissertation (see below) all focus on different aspects of 
statistical learning, language proficiency and the relation between these two. 
Eventually, a synthesis of all these studies (Chapter 7) addresses the three main 
aims of this dissertation, namely (1) whether we can detect statistical learning at 
the individual and group level, (2) whether individual differences in statistical 
learning ability correlate with language proficiency and (3) whether the problems 
observed in children with DLD can be explained by a statistical learning deficit 
that is independent of modality, domain and specific dependency type to be 
learned 
 Chapter 2 provides a quantitative overview (meta-analysis) of what is 
currently known on auditory verbal statistical learning in people with and without 
DLD, and it provides an estimate of the size of the auditory verbal statistical 
learning deficit in people with DLD. This chapter may also reveal whether 
concerns about the existence of a publication bias in the literature on statistical 
learning in atypically developing children are warranted (Schmalz et al., 2017; 
van Witteloostuijn et al., 2017).  
 Chapter 3 reports on the development of a novel, child-friendly online 
measure of statistical learning that can be used to assess auditory nonadjacent 
dependency learning in primary-school-aged children. This novel measure 
assesses the size of the “disruption peak” that occurs in children’s response time 
pattern when a long stretch of stimuli with nonadjacent dependencies is disrupted 
by presenting stimuli without such dependencies.  
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 Chapter 4 assesses whether children with DLD as compared to their 
typically developing peers have an auditory verbal nonadjacent dependency 
learning deficit (using the novel measure that is described in Chapter 3). The 
detection of such dependencies seems crucial in learning the morphosyntactic 
rules of a language. As almost all children with DLD have problems with 
morphosyntax, it is interesting to investigate their sensitivity to nonadjacent 
dependencies, as a specific type of statistical regularity. In investigating this issue, 
this chapter not only compares nonadjacent dependency learning between 
children with and without DLD, but also explores whether individual differences 
in nonadjacent dependency learning are associated with individual differences in 
grammatical proficiency.  
 Chapter 5 extends the focus from auditory verbal statistical learning to 
visual nonverbal statistical learning. The main aim of this chapter is to assess 
whether children with DLD have a visual nonverbal statistical learning deficit as 
compared to their typically developing peers. Assessing the presence and size of 
a visual statistical learning deficit is important if one wants to claim that children 
with DLD have a non-language-specific statistical learning deficit. Furthermore, 
as visual statistical learning has also been proposed to underlie literacy 
development in typically developing children (Arciuli & Simpson, 2012, von 
Koss Torkildsen, Arciuli, & Wie, 2019), this chapter also explores whether 
individual differences in visual statistical learning ability among children with 
DLD are associated with individual differences in literacy. The latter is interesting 
because children with DLD exhibit large individual differences in literacy 
performance: approximately half of the children with DLD have problems with 
reading and/or spelling in addition to their problems with oral language 
(McArthur et al., 2000).  
 By means of an experiment and meta-analysis Chapter 6 addresses the 
association between serial reaction time task performance – a measure of 
nonverbal visuomotoric statistical learning – and grammatical proficiency in 
children with and without DLD. Three questions are addressed. First, we try to 
conceptually replicate the finding that children with DLD have a deficit in their 
detection of sequences in the nonverbal visuomotoric domain (experiment). 
Second, we assess the strength of the proposed correlation between children’s 
nonverbal visuomotoric statistical learning and grammatical proficiency 
(experiment) and place this outcome in the context of previous work on this topic 
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(meta-analysis). Third, it is explored whether the strength of the proposed 
correlation differs between children with and without DLD (meta-analysis). 
  
1.1.5 Embedding of this dissertation and terminology used 
The studies described in this dissertation are part of a larger project on the relation 
between statistical learning and grammar and literacy development in children 
(project “Progracy”). Progracy features two other projects, one on the relation 
between statistical learning and language proficiency in children with 
developmental dyslexia (studies conducted by Merel van Witteloostuijn) and the 
other on the developmental trajectory of statistical learning and its relation to 
language in typically developing children (studies led by Judith Rispens). Though 
reiterated in the relevant chapters, it may be good to mention that the same group 
of children that is described in Chapter 3 of this dissertation also participated in 
the visual nonverbal statistical learning experiment described in van 
Witteloostuijn, Lammertink, Boersma, Wijnen and Rispens (2019). Also, as 
explained in each of the relevant chapters, there is overlap between the typically 
developing children that participated in the experiments described in this 
dissertation (Chapters 4, 5 and 6) and the typically developing children that 
participated in the studies described by Merel van Witteloostuijn (van 
Witteloostuijn, Boersma, Wijnen, & Rispens, 2019a, 2019b, submitted). Finally, 
within the scope of this dissertation, the results of the experiments described in 
Chapters 4, 5 and 6 come from the same children, therefore the sections 
describing the recruitment of these children and the sections describing their 
characteristics overlap.  

It may also be good to provide an explanation for the inconsistency in the 
labeling of children with DLD throughout this dissertation. In 2015, when 
Progracy started, the most commonly used label to refer to children with a 
language disorder that is not associated with a known biomedical etiology was 
specific language impairment (but see Bishop, 2014 for alternative labels). Only 
short after publication of the first paper (Chapter 2) of this dissertation, Bishop, 
Snowling, Thompson, and Greenhalgh (2017) came with the recommendation to 
use the term developmental language disorder when referring to this group of 
children. Following this recommendation, the term DLD is used in all subsequent 
publications and chapters of this dissertation. The recommendation by Bishop et 
al. (2017) also had consequences for the inclusion of children in a clinical research 
sample. Formally, below average nonverbal intelligence and the co-occurrence of 
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other neurodevelopmental language disorders would preclude the diagnosis of 
specific language impairment. With the new recommendations these two criteria 
no longer hold, so that children may be included in a clinical research sample of 
DLD while having below-average nonverbal intelligence and while having 
additional neurodevelopmental disorders. Importantly, at the moment that 
recruitment for the studies in this dissertation started, the Dutch criteria for 
diagnosing children with unexplained language difficulties as having DLD, did 
not follow these new recommendations (Stichting Simea, 2014). Therefore, all 
children with DLD that participated in the studies described in this dissertation 
have at least average nonverbal intelligence and have not been diagnosed with 
other neurodevelopmental language disorders.  
 Finally, all the data and scripts for analyses used for the studies described 
in this dissertation are openly available at Open Science Framework (OSF) project 
pages, and all publications that follow from this dissertation are open access. 
Therefore, we hope that this dissertation plays an exemplary role in making 
experimental research more transparent and available. 
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Chapter 2 
Statistical learning in specific language impairment: A 
meta-analysis 
 
This chapter is a slightly modified version of the paper that was published as: 
 
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2017). Statistical learning 
in specific language impairment: A meta-analysis. Journal of Speech, Language 
and Hearing Research, 60, 3474–3486. 
 
Data and scripts for analyses: https://osf.io/4exbz/ 
 
Abstract 
The current meta-analysis provides a quantitative overview of published and 
unpublished studies on statistical learning in the auditory verbal domain in people 
with and without specific language impairment (SLI). The database used for the 
meta-analysis is accessible online and open to updates (Community-Augmented 
Meta-Analysis), which facilitates the accumulation and evaluation of previous 
and future studies on statistical learning in this domain. A systematic literature 
search identified 10 unique experiments examining auditory verbal statistical 
learning in 213 participants with SLI and 363 without SLI, aged between 6 and 
19 years. Data from qualifying studies were extracted and converted to Hedges’ 
g effect sizes. The overall standardized mean difference between participants with 
SLI and participants without SLI was 0.54, which was significantly different from 
0 (p < .001, 95% confidence interval [0.36, 0.71]). Together, the results of our 
meta-analysis indicate a robust difference between people with SLI and people 
without SLI in their detection of statistical regularities in the auditory verbal input. 
The detection of statistical regularities is, on average, not as effective in people 
with SLI compared to people without SLI. The results of this meta-analysis are 
congruent with a statistical learning deficit hypothesis in SLI.  
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2.1 Introduction 
 
Natural languages are structured at the level of sound (phonology), word 
formation (morphology), and sentence (syntax). These structures are reflected by 
statistical regularities in speakers’ verbal output. Children learning their native 
language unconsciously detect and extract these regularities (Romberg & Saffran, 
2010). This process, called statistical learning, is thought to be fundamental for 
the earliest stages of language acquisition (Evans, Saffran, & Robe-Torres, 2009). 
Two types of statistical learning are generally distinguished: distributional 
statistical learning and sequential statistical learning. Distributional statistical 
learning is about the detection of frequencies with which certain linguistic 
elements or structures occur. Sequential statistical learning concerns the detection 
of the sequential ordering and co-occurrence of concrete elements (e.g., syllables) 
in the auditory input in time (Kerkhoff, de Bree, & Wijnen, submitted). This meta-
analysis focuses on sequential statistical learning, and therefore, from here 
onward, the term statistical learning refers to sequential but not distributional 
statistical learning.  

Individual performance on statistical learning tasks has been shown to 
predict sentence comprehension (Misyak & Christiansen, 2012), processing of 
relative clause sentences with long distance dependencies, and lexical and oral 
language skills in participants’ native language (Evans et al., 2009; Mainela-
Arnold & Evans, 2014). Because tracking statistical patterns appears crucial for 
language acquisition and people differ in their ability to do this, it is not surprising 
that deficits in the ability to detect statistical patterns and relations in the input 
have been put forward as an explanation for impairments of language acquisition, 
notably specific language impairment (SLI; Evans et al., 2009; Hsu & Bishop, 
2011; Ullman & Pierpont, 2005). A considerable number of studies looked at the 
domain specificity of this type of learning deficit in SLI. A recent meta-analysis 
by Obeid, Brooks, Powers, Gillespie-Lynch, and Lum (2016) summarized these 
findings and concluded that people with SLI perform worse on statistical learning 
tasks compared with typically developed people but that this difference in 
performance did not vary as a function of task modality (visual; visuomotoric and 
auditory) or age. The current meta-analysis provides a more extensive quantitative 
investigation of the difference in statistical learning ability between people with 



Statistical learning in specific language impairment: A meta-analysis     15 
 

 
 
 
 
 
 
 

and without SLI1 in the auditory domain. Different from Obeid et al. (2016), our 
focus is on the auditory verbal domain. Specifically, we were interested to see 
whether a difference in statistical learning performance between people with and 
without SLI varied as a function of linguistic level (word segmentation vs. 
grammar) or age at which learning took place. 
 
2.1.1 Statistical learning in de laboratory 
Many experimental studies of statistical learning focus on learning dependencies. 
These dependencies can be learned at different linguistic levels (e.g., word 
segmentation vs. grammar). We first discuss examples of artificial word 
segmentation studies followed by examples of artificial grammar learning studies. 
 In experiments that simulate word segmentation, participants are exposed 
to a continuous stream of syllables that are organized according to a set of 
statistical regularities. The stimuli are designed in such a way that transitional 
probabilities of sequences of certain adjacent syllables are higher than transitional 
probabilities of other adjacent syllables (continuous relationship), reflecting word 
boundaries (Saffran, Newport, Aslin, Tunick, & Barrueco, 1997). After exposure, 
participants perform a lexical decision task (or word recognition task via a 
preferential looking paradigm in the case of infant studies) in which they hear 
sequences of syllables that had high transitional probabilities in the exposure 
phase (reflecting words) as well as sequences of syllables that had low to zero 
transitional probabilities in the exposure phase. Accordingly, adult participants 
have to indicate whether the words they are presented with are part of the language 
they were familiarized with or not. In infant studies, the listening times to the 
sequences of syllables with high transitional probabilities versus sequences of 
syllables with low transitional probabilities are compared. Results show that 
adults and infants are able to distinguish such artificial high probability words 
from artificial low probability words on the basis of adjacent transitional 
probabilities. 
 Contrary to word segmentation studies, the stimuli in artificial grammar 
learning studies consist of already segmented words that have primary stress and 
                                                        

1When we speak of people without SLI, we mean people who are matched in age and/or 
intelligence to participants with SLI (see Table 2.1), who have no reported (history of) 
hearing, language, or learning problems and no reported (history of) neurological 
impairment or illness. 
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minimal coarticulation and are separated by pauses. Artificial grammar learning 
studies aim to resemble grammatical phenomena present in natural language. In 
natural language, for example, grammatical relations are present among 
functional elements (e.g., is and ing) across interleaved lexical elements (e.g., 
Grandma is singing; example taken from Sandoval & Gómez, 2013). In 
experimental designs that test this type of learning, participants are exposed to 
strings generated, unknown to the learner, by a miniature artificial grammar. The 
grammar follows a set of nonadjacent (discontinuous) dependency relations 
(Gómez, 2002), a set of predictive relations (cf. Saffran, 2002), or a set of finite 
rules (finite state grammar; Gómez & Gerken, 1999). The procedure of artificial 
grammar learning designs is similar to the procedure in word segmentation 
studies: After a period of exposure to the language, participants are tested with 
strings that either conform to the grammar (grammatical items) or that violate the 
grammar (ungrammatical items), and participants have to indicate whether the 
string they hear is grammatical or ungrammatical. More important, participants 
are asked to judge strings with elements that they have heard during the 
familiarization phase of the experiment as well as strings with novel elements that 
they have not heard before to test for generalization of the rule (although not all 
artificial grammar learning studies test for generalization; see Grama, Kerkhoff, 
& Wijnen, 2016). 
 
2.1.2 Cognitive processes involved in auditory verbal statistical learning 
As stated in our operational definition, statistical learning requires sensitivity to 
regularities in the input (e.g., statistical cues like transitional probabilities in word 
segmentation and [non]adjacent dependencies in artificial grammar learning). 
However, there are also other cognitive processes involved in auditory verbal 
statistical learning such as phonological awareness (the ability to analyse and 
manipulate incoming phonemes and syllables), verbal short-term memory, and 
verbal working memory. Both word segmentation and artificial grammar learning 
involve the temporary storage of incoming input, which is necessary to pick up 
the statistical regularities between elements in the input (verbal short-term 
memory). In addition, artificial grammar learning, compared with word 
segmentation, requires processing of long distance dependencies and generalizing 
those dependencies to novel items. Long distance dependencies have been argued 
to put more demand on working memory than adjacent dependencies (see, e.g., 
theoretical models on resource limitation of Gibson [1998]), and generalization is 
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more demanding than recognition of items previously introduced (Thompson & 
Newport, 2007). Therefore, we hypothesize that artificial grammar learning, 
compared with word segmentation, is more demanding on working memory 
capacity. In the following section, we discuss how this difference between both 
levels of learning might disadvantage individuals with SLI in their auditory verbal 
statistical learning performance. 
 
2.1.3 Statistical learning in SLI 
In natural language, SLI is characterized by problems at the grammatical level 
(e.g., subject–verb agreement, past–tense marking; Leonard, 2014) as well as at 
the word segmentation level (e.g., lexical–phonological deficits observed in 
gating and nonword repetition tasks; see Mainela- Arnold, Evans, & Coady, 2010; 
Graf Estes, Evans, & Else-Quest, 2007). In artificial language, we see a similar 
pattern: Most studies investigating auditory verbal statistical learning in SLI show 
that participants without SLI outperform participants with SLI both in word 
segmentation and in grammar learning tasks (word segmentation: Evans et al., 
2009; grammar: Hsu, Tomblin, & Christiansen, 2014; Lukács & Kemény, 2014; 
Mainela-Arnold & Evans, 2014; Mayor-Dubois, Zesiger, van der Linden, & 
Roulet-Perez, 2014). It is known that people with SLI exhibit deficits in verbal 
short-term memory and verbal working memory as well (Archibald & Gathercole, 
2006; Marton, Eichorn, Campanelli, & Zakariás, 2016; Montgomery, 2003). As 
these processes are involved in auditory statistical learning, it might well be the 
case that these deficits influence the auditory verbal statistical learning abilities 
of people with SLI. Previous research, however, suggests that memory problems 
cannot solely explain auditory statistical learning problems. For example, 
individuals with SLI have problems with statistical learning in the nonverbal 
domain (Lum, Conti-Ramsden, Morgan, & Ullman, 2014; Lum, Conti-Ramsden, 
Page, & Ullman, 2012; Obeid et al., 2016), which are unlikely to be caused by 
verbal short-term and working memory problems. In addition, Hsu and Bishop 
(2014a) report poor verbal sequence learning in children with SLI, even after 
controlling for limitations of verbal short-term memory (Hebb repetition task). 
Taken together, results of previous studies are congruent with the hypothesis that 
SLI is associated with a “statistical learning disadvantage.” The magnitude and 
moderators of this disadvantage, however, are unknown. Therefore, the primary 
purpose of the current meta-analysis was to assess the magnitude of this statistical 
learning disadvantage in the auditory verbal domain. The second goal was to 
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explore the potential impact of linguistic level and age at which learning takes 
place. We wanted to explore whether the statistical learning disadvantage is more 
severe in artificial grammar learning than word segmentation studies, as the 
former type of learning is more demanding on verbal working memory capacity, 
which is generally affected in SLI. With the second meta-regression, we explore 
whether age moderates the statistical learning disadvantage. Previous studies 
investigating the influence of age in statistical learning have provided mixed 
results. Obeid and colleagues (2016) reported no effect of age on statistical 
learning differences between people with and without SLI across different 
modalities of learning. Lum and colleagues (2014), however, reported smaller 
differences in visuospatial statistical learning performance between people with 
and without SLI for older compared with younger participants. Likewise, studies 
investigating the developmental trajectory of statistical learning in typically 
developing people have reported mixed results. Some studies report that there is 
no evidence for a difference in statistical learning performance between adults 
and children (visual domain: Kirkham, Slemmer, & Johnson, 2002; auditory 
domain: Saffran et al., 1997), whereas others do report that statistical learning 
performance improves with age (visual domain: Arciuli & Simpson, 2011; 
auditory domain: Lukács & Kemény, 2015; visuospatial: Meulemans, van der 
Linden, & Perruchet, 1998). 
 
2.1.4 The present study 
The current meta-analysis provides an estimate of the magnitude of the statistical 
learning disadvantage in people with SLI by means of a quantitative overview of 
both published and unpublished studies that investigate statistical learning in the 
auditory verbal domain in people with and without SLI. In a first step, we 
calculated the standardized averaged mean difference (effect size measure) in 
performance on statistical learning tasks in people with and without SLI. In a 
second analysis, we explored whether the effect size measure was moderated by 
linguistic level (word segmentation vs. grammar) and age. 
 
2.2 Method 
We used the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis statement to organize the current meta-analysis (Moher, Liberati, 
Tetzlaff, Altman, & The PRISMA Group, 2009). Effect size calculations were 
done in the statistical software R (R Core Team, 2017). Formulas were 
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implemented via the R compute.es package (Del Re, 2013), and statistical 
analyses on the effect size measures were conducted with the R meta (Schwarzer, 
2015) and metafor (Viechtbauer, 2010) packages. 
 
2.2.1 Literature search 
Systematic searches for empirical articles were conducted in February 2016 using 
a combination of prespecified key word combinations (details of all key words, 
Boolean operators, and syntax used for each database can be found in Appendix 
A2.1). We conducted our searches in five different sources including PubMed, 
Education Resources Information Center, PsycINFO, Linguistics and Language 
Behavior Abstracts, and Open Access Theses and Dissertations. In addition, we 
asked experts in the field to inform us of any published or unpublished studies via 
two different calls (LINGUIST List and Cogdevsoc list; July 2016). These 
combined searches yielded 161 articles (PubMed: 26 hits, Education Resources 
Information Center: 25 hits, PsycINFO: 64 hits, Linguistics and Language 
Behavior Abstracts: 38 hits, Open Access Theses and Dissertations: five hits, and 
experts in the field: three hits). 
 
2.2.2 Inclusion criteria and study selection 
To be included in the meta-analysis, studies were required to meet the following 
criteria: (a) A study should report on original empirical research data. Both 
published and unpublished studies were eligible, including articles in refereed 
journals, nonrefereed journals, dissertations, and conference presentations; (b) a 
study should have an experimental design that tests sequential statistical learning 
in the auditory verbal domain assessed via a word segmentation, grammaticality 
judgment, or related task; (c) as we aimed to test whether participants implicitly 
detected the statistical regularity, participants should not receive any explicit 
instruction or feedback regarding the underlying structure of the artificial 
language to be learned or on their behavior during the training or test phase; and 
(d) selected studies include one group of participants with SLI and one group of 
age-matched controls who do not have language impairments. More important, 
we only included studies that identified participants with SLI on the basis of 
inclusion and exclusion criteria typical for SLI. Therefore, studies had to report 
scores on standardized language tests2 or use a test battery that differentiates 
                                                        

2Participants with SLI scored at least 1.25 standard deviations below age norms. 



20   Chapter 2 
 

between participants with and without a history of SLI (e.g., Tomblin battery; 
Tomblin, Freese, & Records, 1992; see Table 2.1). In addition, a nonverbal 
intelligence measure3 and no history of neurological or emotional delays should 
be reported for both participant groups. It is important to mention that the 
inclusion and exclusion criteria for SLI vary across the studies in our sample (see 
Table 2.1). We only included studies, however, that based their inclusion criteria 
on both standardized language tests and intelligence scores. If studies failed to 
report on one of these criteria (or if information on these criteria could not be 
confirmed via contact with the authors), the study was excluded from the analysis. 
In addition, when studies included children with nonverbal intelligence below 80, 
the control group and the group with SLI had to be matched on nonverbal 
intelligence to ensure that differences in statistical learning performance are not 
the result of lower intelligence scores. Finally, to be included in the analysis for 
the current article, studies had to be conducted before September 2016 (but see 
footnote 4). However, as our database is accessible online and open to update, 
future studies can be added, which facilitates accumulation and evaluation of 
previous and future studies on statistical learning in this domain (Tsuji, 
Bergmann, & Cristia, 2014). No start date for publications was set to find as many 
studies as possible. For an overview of the exact inclusion and exclusion criteria 
for the studies in our final sample, see Table 2.1. 

After removing duplicates, 81 studies (78 published articles and three 
unpublished conference posters) remained. Two reviewers independently 
conducted the study selection procedure. In a first step, both reviewers performed 
a full-text inspection of the 19 studies (16 published articles and three 
nonpublished conference posters) that were selected, based on screening of the 
title and abstract. The reviewers independently screened these full-text articles 
and posters according to the inclusion criteria. There was 95% (18/19 studies) 
agreement on the selection of these full-text studies (eight studies included, 10 
studies excluded, one study for discussion). After discussion, the reviewers 
decided not to include the one study they had disagreed on because participants 
in this study had received feedback on their behavior during the test phase (von 
Koss Torkildsen, Dailey, Aguilar, Gómez, & Plante, 2013). As a result, the initial 
                                                        

3Nonverbal intelligence had to fall within the normal range (>80), or when the lower 
limit of intelligence was <80, the control group and the group with SLI had to be matched 
on nonverbal intelligence. 
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final selection consisted of eight studies (five published articles and three 
nonpublished conference posters).4 For a visual representation of the literature 
search procedure, see Figure 2.1. 
 Four of the eight studies reported multiple individual experiments or 
multiple outcomes per participant group (Evans et al., 2009; Grunow, Spaulding, 
Gómez, & Plante, 2006; Hsu & Bishop, 2014a; von Koss Torkildsen, 2010). If 
the data necessary to compute the individual effect size were available for each 
experiment separately and the groups of participants tested in the experiments 
were independent (i.e., different participants), all of the experiments of that study 
were included in the meta-analysis. Only the study of Hsu et al. (2014) met these 
criteria. For the other three studies with multiple experiments (Evans et al., 2009; 
Grunow et al., 2006; von Koss Torkildsen, 2010), only one effect size measure 
was incorporated into the final analysis (for more details on our decisions with 
respect to this part, see the subsection Effect size calculation). This resulted in a 
final sample of 10 experiments. 
 
2.2.3 Sample description 
The eight studies (10 experiments) we included in our analysis were published 
(six studies) or presented (two studies) between 2006 and 2017 (see footnote 4). 
The experiments collectively examined 213 participants with SLI and 363 
controls, all between 6 and 19 years old. The dependent variable was slightly 
different across the 10 experiments. In six experiments, the outcome variable was 
the overall accuracy score on a grammaticality judgment task; in three 
experiments, the outcome variable was the overall accuracy score on a word 
segmentation task; and in one experiment, the outcome variable was an event-
related potential (ERP: P600). 
 
2.2.4 Effect size calculation 
For each individual experiment, we calculated the effect size (Hedges’ g) as the 
standardized mean difference (SMD)5 in performance between the participants 

                                                        
4During the review of our current meta-analysis, the poster of Haebig and colleagues got 
published as an article in The Journal of Child Psychology and Psychiatry. Therefore, the 
final data set consists of six published articles and two nonpublished conference posters. 
5The standardized mean difference expresses the size of the effect in each study relative to 
the variability observed in that study (Higgins & Green, 2011). 
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with and without SLI. The SMD was chosen over the raw mean difference, 
because the dependent variables differed across studies (ERP amplitude vs. 
accuracy scores). 

All formulas used to calculate the SMD and the approximation of the 
variance of the SMD for each individual experiment are shown in Appendix A2.2 
and were taken from the R compute.es package (Del Re, 2013). The effect size 
was calculated so that positive values indicated that the participants without SLI 
outperformed the participants with SLI. For seven of the 10 experiments (Evans 
et al., 2009; Evans, Hughes, Hughes, Jackson, & Fink, 2010; Haebig, Saffran, & 
Weismer, 2017; Hsu et al., 2014; Lukács & Kemény, 2014), the SMD was 
calculated with the mean overall accuracy scores and the standard deviation 
scores for both participant groups (mes2 function in the R compute.es package). 
For two experiments (Grunow et al., 2006; von Koss Torkildsen, 2010), the SMD 
was calculated from the reported F statistic on the main effect of group (fes 
function from the compute.es package), and for one experiment (Mayor-Dubois 
et al., 2014), the reported t statistic was used to calculate the SMD (tes function 
in the compute.es package). 
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Figure 2.1 Flowchart indicating data exclusion at each stage of the literature search 
procedure. AGL = artificial grammar learning; SL = statistical learning.  
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As mentioned in the Inclusion criteria and study selection section, it was 
not always possible to calculate multiple effect sizes for studies that ran multiple 
experiments. In the case of the Grunow et al. (2006) experiments, we calculated 
one effect size because the statistical information necessary to calculate a separate 
effect size for each of the different experimental conditions (low vs. high 
intervening X-element, generalization vs. nongeneralization items) was not 
available. Likewise, one effect size was obtained from the study by Evans at al. 
(2009), which reported on two different experiments. The second experiment was 
conducted 6 months after the first. The participants of Experiment 2, however, 
had all participated in Experiment 1, rendering the data of the second experiment 
correlated with a part of the data of the first experiment. A combined effect size, 
taking the correlation term between Experiments 1 and 2 into account, would have 
been the ideal solution because it would take into account the increased precision 
of within-subject measures (Borenstein, Hedges, Higgins, & Rothstein, 2009, pp. 
28–30). However, it was impossible to determine the correlation term between 
the two experiments, because only parts of the data were correlated. Therefore, 
we included only the first experiment, which had twice as many participants as 
the second experiment. Last, von Koss Torkildsen (2010) recorded ERPs during 
both the exposure phase and the test phase. As we have no measures of 
performance during the exposure phase for the other studies in our sample, only 
the effect size measure of the ERPs recorded during the test phase is included. 

Finally, we applied Hedges’ g correction for small sample sizes to all 10 
effect sizes, because most of the experiments had a sample size of less than 20 
(Borenstein et al., 2009, p. 27). 
 
2.3 Results 
 
2.3.1 Publication bias 
Meta-analyses are generally sensitive to publication bias. Publication bias reflects 
the tendency of a higher publication rate for studies with significant results 
compared with studies with nonsignificant results (Dickersin, 2005). Because it 
is more likely that published studies end up in a meta-analysis, the overall 
combined effect size might be overestimated when there is a publication bias in 
the sample used to compute the combined effect sizes (Borenstein et al., 2009, p. 
278). In the current meta-analysis, we analysed funnel plot asymmetry as a 
potential indicator of publication bias (Egger, Smith, Schneider, & Minder, 1997). 
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In our funnel plot (see Figure 2.2), the effect size of a particular experiment is 
plotted against the standard error of that particular experiment. The standard error 
can be interpreted as a measure of experiment size, as generally experiments with 
fewer participants have higher standard errors. In the absence of publication bias, 
a funnel plot is symmetric and funnel shaped; large experiments appear toward 
the top (low standard error) of the plot and generally cluster around the mean 
effect size, whereas smaller experiments appear toward the bottom (higher 
standard error) of the graph and tend to be spread across a broader range of values. 
Visual inspection of our funnel plot (see Figure 2.2) seems to suggest asymmetry 
such that smaller experiments tend to have greater effect sizes (i.e., they appear 
more to the right side of the mean effect size than the left side). The latter could 
indicate publication bias, as small experiments are more likely to be found (or 
published) when the effect size is large compared with when the effect size is 
small. We performed a linear regression on funnel plot asymmetry (Egger et al., 
1997). The test on funnel plot asymmetry was performed using the regtest 
function in the metafor (Viechtbauer, 2010) R package. The regression on funnel 
plot asymmetry was not significant (z = 1.52, p = .13). Therefore, we have no 
statistical evidence for a publication bias in the current sample. 
 
2.3.2 Primary analysis: Effect size and heterogeneity 
We estimated the average weighted SMD and heterogeneity of the sample with a 
random-effects model with the restricted maximum-likelihood estimator for the 
amount of heterogeneity. All 10 observed effect sizes and their weights were 
included to estimate the median effect size. No further moderator variables were 
specified in the model. Sample heterogeneity was assessed via Cochran’s Q test 
for heterogeneity. 

The overall weighted mean effect size and the observed effect sizes for 
the individual experiments are shown in Figure 2.3. The average observed 
weighted mean effect size (intercept) under our random-effects model (random 
effect = study) was 0.54 (SE = 0.09, 95% confidence interval [CI] [0.36, 0.70]). 
The observed effect size was significantly different from zero (z = 5.98, p = 
2.2·10-9) and positive, which indicates that people without SLI, on average, 
outperform people with SLI on statistical learning tasks in the auditory verbal 
domain. In other words, the value of 0.54 can be regarded as our estimate for the 
statistical learning disadvantage in people with SLI. Furthermore, the CI ranges 
from 0.36 to 0.70, indicating that we reliably detected any effect size up to 0.36, 
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which means that we can speak of a moderate-to-large statistical learning 
disadvantage in people with SLI. 

As a measure of heterogeneity, the total amount of variance between the 
experiments was τ2 = 0.0 (SE = 0.036). Cochran’s Q test for heterogeneity was 
not significant (Q(9) = 10.11, p = .34). This means that there is no statistical 
evidence that the true effect sizes differ between the studies in our sample. It is 
important to note, however, that, whereas a significant Q test provides evidence 
that the true effects vary, a nonsignificant Q test alone should not be taken as 
evidence that the true effect sizes are consistent. The low number of experiments 
in our design could well explain the finding of nonsignificant heterogeneity 
(Borenstein et al., 2009, p. 113). 
 

 
Figure 2.2 Funnel plot showing standard error of the effect size Hedges’ g as a 
function of effect size. The vertical line indicates the overall model estimate. The 
triangle-shaped unshaded region represents a pseudo confidence interval region with 
bounds equal to ± 1.96 SE. 
 
2.3.3 Secondary analysis: Meta-regressions on linguistic level and age 
As mentioned in the Introduction, we were interested in seeing whether the 
linguistic level (word segmentation vs. grammar) and age at which the 
experiments were performed influence the SMD. We do realize, however, that 
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our sample includes only 10 studies, which renders it unlikely that we will find a 
significant effect. Nevertheless, we decided to continue our meta-regression, as 
assessing the impact of the moderator variables linguistic level and age was part 
of our research question. As our moderator variables are correlated, the impact of 
both moderators is evaluated by means of two separate meta-regression models. 
 To assess whether the linguistic level at which the experiments were 
performed (word segmentation vs. grammatical structure) influences the SMD, 
we added linguistic level as a between-experiments moderator variable to the 
random-effects model described above. When we coded experiments at the word 
segmentation level as −"

#
	and experiments at the grammatical level as +"

#
, the 

resulting mixed-effects model detected no significant effect of linguistic level 
(estimate of the SMD difference = −0.15, SE = 0.18, z = −0.80, p = .43, 95% CI 
[−0.51, +0.21]). 
 As can be seen in Figure 2.3 (and Table 2.1), the studies in our sample 
included participants between 6 and 19 years old. To test for age effects, we fit a 
second meta-regression model with age in years (log-transformed) as the 
continuous predictor variable. The mixed-effects model detected no significant 
effect of age (estimate of the SMD difference = −0.10, SE = 0.11, z = −0.91, p = 
.36, 95% CI [−0.32, +0.12]). 
 In summary, we found no evidence that linguistic level or age influences 
the statistical learning disadvantage in people with SLI.6 The potential effects of 
these moderators might be too small to detect with meta-regression due to the 
relatively small number of studies in our sample. 
 

                                                        
6In addition, we conducted an exploratory meta-regression with the moderator variable 
adjacency type. This regression revealed no significant effects either. As one of our 
reviewers pointed out, however, a meta-regression with the moderator variable 
adjacency type is problematic, as adjacency type is highly correlated with linguistic 
level (i.e., all word segmentation studies feature an adjacent dependency learning 
paradigm, whereas the artificial grammar learning studies featured a mix of adjacent 
and nonadjacent dependency types). 
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Figure 2.3 Forest plot showing overall and individual average weighted effect sizes 
(Hedges’ g) and 95% confidence interval (CI). A positive effect size indicates that the 
control group outperformed the group with specific language impairment. GS = 
grammatical structures; WS = word segmentation; SMD = standardized mean 
difference. [a] = effect size over experiment 1a; [b] = combined effect size over both 
types of generalization and set size; [c] = effect size for set size x = 24; [d] effect size 
for set size x = 12; [e] effect size for set size x = 2.  
 
2.4 Discussion 
The primary purpose of our meta-analysis was to provide a quantitative overview 
of published and unpublished studies on auditory verbal statistical learning in SLI 
to evaluate the magnitude of the auditory verbal statistical learning disadvantage 
in people with SLI. We found that, on average, the detection of statistical 
regularities in the input was not as effective in people with SLI as in people 
without SLI (statistical learning disadvantage) and that this difference in 
performance was moderate to large. The results supplement the findings of Obeid 
et al. (2016) on statistical learning across different modalities in people with SLI. 
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Different from Obeid and colleagues, our focus was on statistical learning in the 
auditory verbal domain, which allowed us (a) to add five additional studies on 
statistical learning in this domain that were not included in the Obeid et al. study 
and (b) to further explore whether differences in statistical learning ability 
between people with and without SLI arise as a function of linguistic level. 
Following on the latter, the second goal of our meta-analysis was to investigate 
whether the magnitude of statistical learning disadvantage in people with SLI was 
moderated by the linguistic level (word segmentation vs. grammar) or age at 
which learning takes place. We did not find evidence that the difference in 
statistical learning performance between people with and without SLI is 
moderated by the linguistic level and age at which learning takes place. Although 
the absence of the effect of linguistic level is a null effect and therefore difficult 
to interpret, it is in line with previous research reporting absences of associations 
between verbal working memory and sequence repetition learning (Hsu & 
Bishop, 2014a; Lum et al., 2012). Alternatively, the potential influence of both 
moderators might have been too small to detect with our meta-regressions due to 
the relatively small number of studies in our sample. 

In all, our results extend previous findings on a visual statistical learning 
disadvantage in SLI (Lum et al., 2012, 2014; Obeid et al., 2016) to the auditory 
verbal domain and underline the assumption of a general cognitive deficit in the 
implicit detection of statistical regularities and/or dependencies in people with 
SLI that contributes to the language problems seen in this population (see also 
Evans et al., 2009; Hsu & Bishop, 2011, 2014a; Ullman & Pierpont, 2005). 
 
2.4.1 Relevance for clinicians working with SLI 
The current meta-analysis provides evidence that people with SLI have more 
difficulties with statistical learning than people without SLI. These findings 
support the use of evidence-based interventions that facilitate and stimulate the 
detection of (statistical) regularities in the input for people with SLI. A concrete 
example of such a statistical learning–based intervention is the conversation 
recast treatment for morpheme errors in children with SLI (Plante et al., 2014). 
Plante and colleagues base their training method on findings from artificial 
language studies. In such studies, strings have an a X b structure in which the a 
and b elements always co-occur (Gómez, 2002). It has been found that 
participants only learn the nonadjacent dependencies when the variability (i.e., 
different numbers of X-elements) of the intervening X-element is high enough 
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(Gómez, 2002). Likewise, Plante et al. (2014) showed that children’s use of 
trained morphemes improved for children who were trained on these morphemes 
in a high-variability context (24 different verbs). They found no evidence of such 
a treatment effect for children in the low-variability (12 different verbs) context. 
It thus seems that both people with and without language impairment benefit from 
variability and not only repetition in their language input (Plante et al., 2014). 
High variability facilitates rule learning rather than rote learning, as participants 
need to look for regularities and patterns in the input as soon as they notice that 
memorization is not an option in case of high variability (exceeding working 
memory capacity). These results suggest that clinicians working with children 
with SLI need to provide a great number of examples when explaining new rules. 
 
2.4.2 Publication bias 
We would like to stress that, although the regression on funnel plot asymmetry 
did not reach significance, one should always be cautious for the possibility of 
publication bias in the literature on auditory statistical learning in SLI. Such a 
potential publication bias relates to the validity of the classical statistical learning 
paradigms to measure statistical learning efficiency. Recently, more and more 
researchers stress the importance of an online measure of statistical learning (e.g., 
Bogaerts, Franco, Favre, & Rey, 2016; Isbilen, McCauley, Kidd, & Christiansen, 
2017; Misyak, Christiansen, & Tomblin, 2010) or a test phase that is more 
sensitive to individual variation. As mentioned by Siegelman, Bogaerts, and Frost 
(2017), a large proportion of the participants in a statistical learning study perform 
at chance level. On the group level, test performance is usually just above chance, 
and an accuracy score higher than 60% is rarely obtained. For these reasons, we 
consider it likely that more research groups have unpublished (pilot) data on 
auditory statistical learning in SLI that did not yield statistical significance. 
Inclusion of these unpublished data could have made our estimates more precise, 
and we therefore invite researchers who have such unpublished null results to 
contribute to our Community-Augmented Meta-Analysis via 
https://osf.io/4exbz/. 
 
2.4.3 Recommendations for future studies 
The results of the current meta-analysis show that there is a moderate-to-large 
statistical learning disadvantage in people with SLI. The moderators of this 
disadvantage, however, remain unknown. Therefore, we recommend that future 
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studies test the effects of potential moderators such as linguistic level and age 
within a single study in which the variables are within-subject predictors. 
Longitudinal designs can be used to test statistical learning performance of the 
same participants but at different ages. Furthermore, we recommend the use of 
more sensitive and elaborate (e.g., online) measures of statistical learning at both 
the individual and group levels. For example, our meta-analysis included only one 
ERP study (von Koss Torkildsen, 2010). Interestingly, the difference between 
people with and without SLI in this particular study was relatively high (see 
Figure 2.3). Potentially, the ERP measure compared with the accuracy measure is 
more sensitive in picking up differences in performance between people with and 
without SLI. We recommend future studies to further investigate this potential 
difference in a within-subject design with results of both measurement types for 
each individual. 
 
2.5 Conclusion 
In conclusion, the result of our meta-analysis shows that there is a moderate-to-
large statistical learning deficit in people with SLI. This result is congruent with 
the hypothesis that people with SLI are less effective in statistical learning in the 
auditory verbal domain than people without language impairment. These results 
motivate the development of statistical learning–based interventions for children 
with SLI. More studies are needed, however, to perform more fine-grained 
analyses on the determinants of statistical learning deficiencies in the auditory 
verbal domain in people with SLI. 
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Chapter 3 
Auditory statistical learning in children: Novel insights 
from an online measure 
 
This chapter is a slightly modified version of the paper that was published as: 
 
Lammertink, I., van Witteloostuijn, M., Boersma, P., Wijnen, F., & Rispens, J. 
(2019). Auditory statistical learning in children: Novel insights from an online 
measure. Applied Psycholinguistics, 40(2). 279–302. 
 
Data and scripts for analyses: https://osf.io/bt8ug/ 
 
Abstract 
Nonadjacent dependency learning is thought to be a fundamental skill for syntax 
acquisition and often assessed via an offline grammaticality judgment measure. 
Asking judgments of children is problematic, and an offline task is suboptimal as 
it reflects only the outcome of the learning process, disregarding information on 
the learning trajectory. Therefore, and following up on recent methodological 
advancements in the online measurement of nonadjacent dependency learning in 
adults, the present study investigates if the recording of response times can be 
used to establish nonadjacent dependency learning in children. Forty-six children 
(mean age: 7.3 years) participated in a child-friendly adaptation of a nonadjacent 
dependency learning experiment (López-Barroso, Cucurell, Rodríguez-Fornells, 
& de Diego-Balaguer, 2016). They were exposed to an artificial language 
containing items with and without nonadjacent dependencies while their response 
times (online measure) were measured. After exposure, grammaticality judgments 
(offline measure) were collected. The results show that children are sensitive to 
nonadjacent dependencies, when using the online measure (the results of our 
offline measure did not provide evidence of learning). We therefore conclude that 
future studies can use online response time measures (perhaps in addition to the 
offline grammaticality judgments) to further investigate nonadjacent dependency 
learning in children. 
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3.1 Introduction 
 
Statistical learning, the ability to detect structure in the environment, plays a key 
role in the development of language, perception, motor skills, and social 
behaviour (cf. Perruchet & Pacton, 2006). It is not surprising, then, that an 
increasing number of studies investigate the relation between individual statistical 
learning performance and cognitive development. A particular type of statistical 
learning is nonadjacent dependency learning (NAD learning). Nonadjacent 
dependencies are amply present in natural language. Consider, for example, the 
relation between the functional elements is and ing across interleaved lexical 
elements in Grandma is singing (example taken from Sandoval & Gómez, 2013). 
For this reason, NAD learning is thought to be fundamental for syntax acquisition 
(see review by Erickson & Thiessen, 2015), and in adults, sensitivity to 
nonadjacent dependencies has shown to predict online processing of long distance 
dependencies in relative clauses (Misyak, Chirstiansen, & Tomblin, 2010). 

However, the generally used measure of NAD learning, an offline group-
level grammaticality judgment score (Gómez, 2002), is problematic when 
evaluating the learning ability of individuals as this offline measure only 
quantifies the extent of learning after a specific period of time (i.e., what is 
learned). It does not provide insight in the speed of learning, nor can it disentangle 
statistical learning from other processes potentially impacting the offline measure, 
such as encoding, memory capacity, and decision-making biases (i.e., how 
learning occurs; Siegelman, Bogaerts, Kronenfeld, & Frost, 2018). Therefore, a 
growing body of research stresses the importance of using measures that provide 
information on the individual learning trajectory and/or the various processes 
involved in NAD learning (López-Barroso, Cucurell, Rodríguez-Fornells, & de 
Diego-Balaguer, 2016; Misyak et al., 2010). 

In the classical offline NAD learning task, participants are exposed to 
strings of an artificial language. The strings consist of three pseudowords that, 
unbeknownst to the participant, contain nonadjacent dependencies. The strings 
have the form a X b, c X d, e X f with the initial and final elements forming a 
dependency pair. The intervening X-elements vary and are usually taken from a 
pool of different pseudowords (e.g., wadim, kasi; Gómez, 2002). After a certain 
period of exposure to the artificial language, participants perform a 
grammaticality judgment task in which they are tested with strings that either 
conform to the nonadjacent dependency rules or violate the nonadjacent 
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dependency rules. If participants’ proportion of correct answers on the 
grammaticality judgment task exceeds chance level, it is concluded that they are 
sensitive to the nonadjacent dependency rules. As we will argue later, this reliance 
on the offline measure only is problematic as it might not fully reflect participants’ 
(unconscious) acquired knowledge of the nonadjacent dependencies. It also 
disregards all information regarding the learning dynamics during exposure to the 
novel language. 

As an increasing number of researchers stresses the importance of 
measuring statistical learning in a different way than by grammaticality 
judgments, several different measures have been proposed (e.g., the statistically 
induced chunking recall task; see Isbilen, McCauley, Kidd, & Christiansen, 
2017). In the current paper we focus on the collection of response times (RTs) as 
an online measure of NAD learning. The use of RTs as an online measure of 
learning has its roots in the serial reaction time (SRT) literature (Nissen & 
Bullemer, 1987). In the SRT task, RTs have been shown to successfully track 
participants’ (both adults and primary-school-aged children; Thomas & Nelson, 
2001) online learning of visuomotor sequences. In the original version of the task, 
participants have to respond to a visual stimulus appearing in one of four locations 
on a screen. Participants’ RTs in sequenced blocks (stimuli follow a fixed 
sequence) are compared to their RTs in random nonsequenced blocks (stimuli 
appear in random order). The typical result is that participants respond faster in 
sequenced blocks than in random blocks, and this effect is taken as evidence for 
implicit learning of the sequence. Following this pattern of results, two recent 
studies transformed the SRT task into an online NAD learning experiment. Both 
studies successfully showed that RTs can be used to track NAD learning in the 
auditory domain in adults (López-Barroso et al., 2016; Misyak et al., 2010). Of 
these two studies, the latter resembles the SRT paradigm most closely. Misyak et 
al. designed a cross-modal paradigm in which participants were auditorily 
exposed to strings consisting of three pseudowords and three dependency pairs (a 
X b, c X d, e X f; Gómez, 2002). Participants were simultaneously presented with 
six printed pseudowords on a screen and asked to click as fast as possible on the 
pseudoword that matched the auditorily presented word. Thus, for example, 
participants heard the string pel wadim rud, then the participant first clicked pel 
upon hearing pel, then wadim upon hearing wadim, and finally rud upon hearing 
rud. Similarly, as in the SRT paradigm, the sequenced blocks (i.e., blocks 
containing nonadjacent dependencies) were temporarily disrupted by one 
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nonsequenced block in which the strings violated the nonadjacent dependency 
rules (e.g., *a X d,*a X f). Misyak et al. showed that participants’ RTs were slower 
in the nonsequenced block than in the surrounding sequenced blocks, confirming 
that adults are sensitive to the nonadjacent dependency pairs. Whereas this cross-
modal design works well with adults, it is difficult to use with (young) children, 
as well as with participants from language impaired populations as the task 
requires good reading skills. Another auditory online NAD learning task, 
developed by López-Barroso et al. (2016), remedies this shortcoming. 

López-Barroso et al. designed a NAD learning experiment in which the 
SRT task is combined with a word monitoring task (for a comparable design in 
another type of auditory statistical learning task, see Franco, Eberlen, 
Destrebecqz, Cleeremans, & Bertels, 2015). As in Misyak et al. (2010) and in the 
classical NAD learning studies (Gómez, 2002), adults were exposed to artificial 
language strings that were generated according to nonadjacent dependency rules. 
Adults had to press a green or red button upon hearing a specific target item, 
rendering the task completely auditory. The targets were always the final elements 
of the nonadjacent dependency pairs (a X b, c X d). After a certain amount of 
exposure to the rule items (sequenced blocks), adults were presented with strings 
in which the NAD rules were disrupted. For example, items contained the b-
element as the final element, but this was not preceded by the a-element as before, 
and so these items are analogous to the random block in an SRT task. In analogy 
with the SRT task, adults’ RTs to target elements were shorter in the nonadjacent 
dependency items compared to the random items, reflecting anticipatory word 
monitoring, and the authors therefore conclude that RTs can be used to track 
adults’ sensitivity to nonadjacent dependencies. 

To the best of our knowledge, no published studies have tracked auditory 
NAD learning online in primary-school-aged children, and only one published 
study reports on offline NAD learning in primary-school-aged children (Iao, Ng, 
Wong, & Lee, 2017). As the use of online measures of NAD learning is relatively 
new, this lack of online measures in primary-school-aged children is not 
surprising. The low number of studies reporting on offline measures, however, is 
surprising as there is ample evidence of offline auditory NAD learning in infants 
(e.g., 4-month-olds: Friederici, Mueller, & Oberecker, 2011; 18-month-olds: 
Gómez, 2002; 15- and 18-month-olds: Gómez & Maye, 2005) and adults (e.g., 
Gómez, 2002; Newport & Aslin, 2004; Onnis, Monaghan, Christiansen, & Chater, 
2004). This could be because the generally used offline measures of NAD learning 
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(grammaticality judgments) are difficult to administer to children of this particular 
age. NAD learning in infants is assessed via the head-turn preference procedure, 
a procedure unsuitable for older children (Cristia, Seidl, Singh, & Houston, 2016). 
As for the offline grammaticality judgment score of NAD learning in adults, some 
shortcomings were already mentioned above, but compared to adults, the offline 
grammaticality judgment measures of NAD learning might be even more 
problematic in children as such measures involve some form of metalinguistic 
awareness that children acquire relatively late (Bialystok, 1986) and that requires 
more than the language representation alone (e.g., attention and executive 
functioning). In yes/no grammaticality judgment tasks, children often show a yes 
bias: they simply accept close-enough descriptions or they reject strings for 
reasons unrelated to the dependency rules (Ambridge & Lieven, 2011). The two-
alternative forced-choice design (choosing one option out of two possibilities) 
forces children to make a selection when they might think that both (or neither) 
options are correct (McKercher & Jaswal, 2012). For these reasons, the child’s 
offline judgment might not always reflect sensitivity to the nonadjacent 
dependencies. 
 
3.1.1 The present study 
Prompted by the absence of online measures of NAD learning in primary-school-
aged children and by the low number of offline NAD learning measures in this 
age range, our aim was to investigate whether primary-school-aged children are 
sensitive to nonadjacent dependencies in an artificial language. In order to 
investigate this, two research questions were formulated: 
 
1. Can we measure primary-school-aged children’s sensitivity to 
nonadjacent dependencies online by means of recording RTs? 
2. Can we measure primary-school-aged children’s sensitivity to 
nonadjacent dependencies offline by means of an offline grammaticality 
judgment task? 
 
Similarly to conventional offline NAD learning experiments and to the online 
auditory NAD learning experiment of López-Barroso et al. (2016), we exposed 
children to strings of an artificial language that, unbeknownst to the children, were 
generated according to a rule (i.e., the strings have an a X b structure in which the 
a-element and the b-element always co-occur; see Gómez, 2002). Children 
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performed a word monitoring task that allowed us to measure children’s RTs to 
the b-elements. After a certain amount of exposure to the nonadjacent 
dependencies, we presented items that were discordant with the nonadjacent 
dependencies (disruption block). In analogy with the SRT task, we predict that if 
children are sensitive to the nonadjacent dependencies, their RTs to the b-element 
should increase in the disruption block relative to the preceding training block and 
decrease again, after the disruption block, when rule-based items return in the 
recovery block. After the online measurement of learning, the children took part 
in an offline measurement of learning (a two-alternative grammaticality judgment 
task), and then their explicit knowledge of the rules was evaluated by means of a 
short questionnaire. 

Finally, we explored the relationship between the online measure and 
offline measure of NAD learning. We hypothesize that if both measures reflect 
sensitivity to NADs, children’s RTs to the target items will increase in the 
disruption block relative to the surrounding blocks and they will perform above 
chance level on the grammaticality judgment task. However, as grammaticality 
judgments are likely problematic for children, it is possible that we would observe 
a discrepancy between the two measures. 
 
3.2 Method 
 
3.2.1 Participants 
Fifty-four native Dutch-speaking primary-school-aged children participated in the 
experiment. Eight were excluded for a variety of reasons: equipment error (N = 
1), not finishing the experiment (N = 3), or because overall accuracy in the online 
word monitoring task was lower than 60% (N = 4). As a result, 46 children were 
included in the final analysis (female = 22, male = 24; mean age = 7;3 years; 
months, range = 5;9–8;6 years; months). No hearing, vision, language, or 
behavioural problems were reported by their teachers. Children were recruited via 
four different primary schools across the Netherlands. Approval was obtained 
from the ethics review committee of the University of Amsterdam, Faculty of 
Humanities. 
  



An online measure of auditory verbal statistical learning     43 
 

 
 
 
 
 
 
 

3.2.2 Apparatus 
The experiment was presented on a Microsoft Surface 3 tablet computer using E-
prime 2.0 (2012) software (Psychology Software Tools, Pittsburgh, PA). RTs 
were recorded with an external button box attached to this computer. The auditory 
stimuli were played to the children over headphones (Senheiser HD 201). 
 
3.2.3 Materials and procedure 
The task. The structure of our NAD learning experiment is similar to that of 
conventional NAD learning experiments. Children were exposed to an artificial 
language that contained two nonadjacent dependency rules (tep X lut and sot X 
mip). This exposure phase was followed by a grammaticality judgment task and a 
short questionnaire that assessed awareness of the nonadjacent dependencies. In 
contrast to conventional NAD learning experiments, however, children performed 
a word monitoring task, which allowed us to track children’s online learning 
trajectory by means of a RT measure. To this end, we designed a child-friendly 
adaptation of an online NAD learning experiment that was administered to adults 
(López-Barroso et al., 2016). As in conventional NAD learning tasks, children 
were not informed about the presence of any regularities in the artificial language, 
rendering the task an incidental learning task. 

The word monitoring part of the experiment was framed as a game in 
which children were instructed to help Appie (a monkey) on picking bananas. 
Appie taught the children that they would hear utterances consisting of three 
nonexistent words (pseudowords) and that they had to press the green button, as 
quickly as possible, when they heard the specific target word and the red button 
when none of the three words was the specific target word. In addition, Appie told 
the children that it was important to pay attention to all three words in the 
utterances, because questions about the utterances would follow at the end (i.e., 
the grammaticality judgment task). Children were told only that questions would 
follow, but they were not informed on the nature of the questions. Two versions 
of the experiment were created, with either lut (Version 1) or mip (Version 2) as 
the target word. The target word remained the same across the whole experiment. 
All children thus heard the exact same stimuli, the only difference between the 
two experiment versions being the button colour assigned to lut (Version 1: green; 
Version 2: red) or mip (Version 1: red; Version 2: green). 

Trial types. Children were exposed to three trial types. Two types were 
nonadjacent dependency utterances: target items ending in the target word 
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(Version 1: lut; Version 2: mip), and therefore requiring a green button press; and 
nontarget items ending in the nontarget word (Version 1: mip; Version 2: lut), 
requiring a red button press. The third type were filler items, which did not contain 
a nonadjacent dependency as specified by the rule and required, similarly to the 
nontarget trials, a red button press because the last word was not the target 
(variable “f-element”; see below). Each trial (target, nontarget, or filler) consisted 
of three pseudowords with a 250-ms interstimulus interval between the three 
pseudowords. The average trial length was 2415 ms (min = 2067 ms; max = 2908 
ms). Children had to press the button within 750 ms after the end of each 
utterance. If they did not do so, a null response was recorded and the next trial 
was delivered. 

Eighty percent (216 trials) of the total 270 trials were target or nontarget 
trials. The structure of these trials was dependent on block type, as explained in 
the next section. The remaining twenty percent (54 trials) of all trials were fillers. 
The structure of these fillers was constant across the whole experiment and thus 
independent of block type. Fillers were built according to a f X f structure: 24 f-
elements and 24 X-elements (Table 3.1) were combined under the constraint that 
the same f-element could not appear twice in the same utterance and that each X-
element had the same probability to appear before or after a specific f-element. 
These fillers were added in anticipation of the disruption block, as explained in 
the next section. 

Block types. There were three block types: training (3 blocks), disruption 
(1 block), and recovery (1 block). Each training block and recovery block 
consisted of 24 targets following one of the two nonadjacent dependencies (e.g., 
tep X lut), 24 nontargets following the other nonadjacent dependency (e.g., sot X 
mip), and 12 fillers. Each of the 24 unique target or nontarget trial combinations 
was presented once per block, and repeated four times over the course of the 
whole experiment (three times in the training blocks and once in the recovery 
block). Unique filler item combinations were never repeated. This led to a total of 
96 tep X lut trials, 96 sot X mip trials, and 48 f X f trials in the four sequenced 
blocks. The X-elements in the target or nontarget trials were selected from the 
same pool of 24 X-elements that was used for the filler items (Table 3.1). The 
three training blocks were followed by one disruption block (30 trials). In this 
block, the (non)target did not comprise the nonadjacent dependencies presented 
in the training blocks. Instead their structure was f X lut and f X mip. F-elements 
and X-elements for these (non)targets were again selected from the elements 
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presented in Table 3.1. Half of the X-elements were selected for the utterances 
with lut and the other half of the X-elements were selected for the utterances with 
mip. As a result, the disruption block had 12 f X lut, 12 f X mip, and 6 f X f trials. 
The disruption block was followed by the recovery block, which contained items 
structured similarly as the items in the three training blocks described above. 
 

Table 3.1 Overview of the 24 X-elements and 24 f-elements used to build the 
target items, nontarget items and filler items 
X-elements f-elements 

banip, biespa, dapni, densim, domo, 
fidang, filka, hiftam, kasi, kengel, 
kubog, loga, movig, mulon, naspu, 
nilbo, palti, pitok, plizet, rasek, seetat, 
tifli, valdo, wadim 

bap, bif, bug, dos, dul, fas, fef, gak, 
gom, hog, huf, jal, jik, keg, ket, kof, 
naf, nit, nup, pem, ves, wop, zim, zuk 

 
We predicted that if children are sensitive to the nonadjacent dependencies 
between each initial and final element in the target trials and nontarget trials, they 
should respond faster to target items and nontarget items in the third training block 
and the recovery block compared to the disruption block (we will refer to this RT 
pattern as the disruption peak). Faster responses are expected in the third training 
block and recovery block as in these blocks, the initial word predicts the third 
word (and thus colour of the button), whereas this is not the case in the disruption 
block in which all trials (target, nontarget, and filler) start with variable f-
elements. By having filler items throughout the whole experiment, children are 
used to hearing utterances that start differently from tep or sot, ensuring that 
slower RTs in the disruption block are not simply a result of hearing utterances 
starting with novel pseudowords. 

Offline measure of learning: Grammaticality judgments. After the 
recovery block, children received new instructions in which they were told that 
they would hear pairs of utterances and that they had to decide for each pair which 
of the two utterances was most familiar to the utterances in the previously heard 
language (e.g., tep wadim lut or tep wadim mip; two-alternative forced choice). In 
each utterance pair, one member followed the nonadjacent dependency rule 
(correct; tep wadim lut in the example above) and the other member violated the 
nonadjacent dependency rule (incorrect; *tep wadim mip in the example above). 
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Children were presented with sixteen utterance pairs. In eight of these utterance 
pairs, both members contained a novel X-element to test for generalization (dufo, 
dieta, gopem, noeba, nukse, rolgo, sulep, or wiffel). In addition, in each 
experiment version, half of the items assessed children’s knowledge of their target 
NAD rule (Version 1: tep X lut; Version 2: sot X mip) whereas the other half of 
the items assessed their knowledge of the nontarget NAD rule (Version 1: sot X 
mip; Version 2: tep X lut). If needed, each single member of a pair could be 
repeated. Children had to respond verbally with “first” or “second”. Their 
responses were recorded in E-prime by the experimenter. 

Short debriefing: Awareness questionnaire. Once the children had 
completed all tasks, they were asked several questions regarding their awareness 
of the structures in the artificial language. Information concerning awareness of 
the nonadjacent dependencies is available for only half of the participants. The 
other half of the children received questions regarding their awareness of structure 
in a visual statistical learning task (see Procedure section and see van 
Witteloostuijn, Lammertink, Boersma, Wijnen, & Rispens, 2019). Some of the 
questions included in this exit questionnaire aimed at gaining insight into 
participants’ strategies during the exposure and grammaticality judgment phase 
(e.g., What did you focus on? Did you know when to press the green or red button 
or were you guessing?), while other questions directly asked whether participants 
had any explicit knowledge of the structure (e.g., complete the missing word in 
an utterance, did you notice a pattern and, if yes, explain what the pattern was). 

Stimuli recording. All auditory stimuli were recorded in a sound 
attenuated room by a female native speaker of standard Dutch. The stimuli were 
created following Gómez (2002), but slightly adapted to meet Dutch phonotactic 
constraints as in Kerkhoff, de Bree, de Klerk and Wijnen (2013). The three-
pseudoword-utterances featured a strong–weak metrical stress pattern, which is 
the dominant pattern in Dutch, and featured the following syllable structure: a 
monosyllabic word (tep, sot, or f-element) was followed by a bisyllabic word (X-
element), followed by a monosyllabic word (lut, mip, or f-element). The 
pseudowords were recorded in sample phrases and cross-spliced into the final 
utterances. The auditory instruction given by Appie the monkey was recorded by 
a different female native speaker of standard Dutch. The speaker was instructed 
to use a lively and friendly voice as if she was voicing a monkey. 

Procedure. All children performed three different tasks: the NAD 
learning task (approx. 30 min), a self-paced visual statistical learning task 
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(approx. 10 min, see van Witteloostijn, Lammertink et al., 2019), and a pilot 
version of a spelling task (approx. 5 min). In the current paper, we only report on 
the results of the NAD learning task.  

After every 30 utterances, children received feedback on the number of 
bananas they had picked (the monkey was awarded a banana whenever the child 
pressed the correct button). After the exposure phase, which lasted approximately 
20 min, the children automatically received instructions on the grammaticality 
judgment task. This grammaticality judgment task was followed by an informal 
debriefing. For a visual representation of the word monitoring and grammaticality 
judgment tasks, see Figure 3.1. 
 

 
 
Figure 3.1 Visual representation of the online test phase (word monitoring task) and 
offline test phase (grammaticality judgment task) of the nonadjacent dependency 
learning task. 
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3.2.4 Data preprocessing 
Before analysing children’s RT data and accuracy scores, the raw data set was 
preprocessed to remove unreliable measurements as described below. 

Preprocessing RT data (online measurement). For the analysis of the 
RT data, all responses to filler items (20% of total trials) and all incorrect 
responses (17% of total trials7) were removed. RTs were measured from the onset 
of the third element and were considered an outlier whenever (a) children pressed 
a button before the onset of the third element or (b) when the RT for a particular 
trial type (target or nontarget) was 2 standard deviations (SD) slower or faster than 
the mean RT for that particular trial type of the same child in the same block. A 
total of 256 (3.1%) outliers were removed. We used raw RT (instead of log-
transformed RT data) as these are easier to interpret and both the quantile plot of 
the raw RT and the quantile plot of the log-transformed RT did not raise any 
concerns with respect to the normality of the residuals (see the Rmarkdown Main 
analyses script on our Open Science Framework project page: 
https://osf.io/bt8ug/). Finally, we selected children’s RTs of the third training 
block, disruption block, and recovery block (4464 observations) and used this data 
set to answer our research question. 

Preprocessing accuracy data (offline measurement). None of the 
responses in the grammaticality judgment task were removed. Responses were 
coded such that if the child picked the utterance with the trained nonadjacent 
dependency, the answer was judged correct (1), whereas the answer was judged 
incorrect if the child picked the utterance that violated the nonadjacent 
dependency rule (0). 
 
3.2.5 Data analysis 
RT data (online measure) were analysed using linear mixed-effects models 
(package lme4, Version 1.1-12; Bates, Maechler, Bolker, & Walker, 2015) in the 
statistical programming language R (R Core Team, 2017). For each relevant 
predictor, we computed its 95% confidence interval by the profile method; the 
corresponding p value was determined from the same profile iteratively (e.g., p 
was less than .05 if and only if the confidence interval did not contain zero). The 
dependent variable was RT as measured from the onset of the third element of the 

                                                        
7Seventeen percent of target trials and 16% of nontarget trials, also the total percentage of 
errors, was approximately equally distributed across the five blocks. 
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utterance. RT was fitted as a function of the ternary predictor Block (third training, 
disruption, or recovery), the binary predictors Targetness (nontarget or target) and 
ExpVersion (version 1 or version 2; see Online measures in the Results section 
for more details), and the continuous predictor Age (in days). The predictors 
Block, Targetness, and ExpVersion were coded with sum-to-zero orthogonal 
contrasts (as detailed below) and the predictor Age was centered and scaled. The 
RT model contained by-subject and by-item (X-element; N = 24) random 
intercepts, by-subject random slopes for the main effects of Targetness and Block 
as well as for the interaction between Targetness and Block, and a by-item random 
slope for ExpVersion. 

Accuracy data of the grammaticality judgment task (offline measure) 
were analysed using a generalized linear mixed-effects model with accuracy 
(correct = 1; incorrect = 0) as the dependent variable. Accuracy was fitted as a 
function of the binary predictors Generalization (novel or familiar) and 
ExpVersion (Version 1 or Version 2) and the continuous predictor Age (in days). 
The binary predictors were coded with sum-to-zero orthogonal contrasts and the 
continuous predictor Age was centered and scaled. The accuracy model had by-
subject and by-item (X-element; N = 16) random intercepts, by-subject random 
slopes for the main effects of Generalization, and a by-item random slope for 
ExpVersion. Finally, we explored the relationship between children’s online 
measure of learning (i.e., disruption peak) and their offline measure of learning 
(i.e. accuracy score). For each child, we computed an online disruption score by 
subtracting their average RT in the disruption block from their average combined 
RT in the third training block and recovery block combined. The proportion of 
correct answers on the grammaticality judgment task was taken as the offline 
measure of learning.  

The relationship between the online learning score and the offline 
learning score was explored with a Pearson r correlation coefficient. In addition, 
we made our data, data preprocessing script, and analysis script available on our 
Open Science Framework project page: https://osf.io/bt8ug/. In the scripts on our 
Open Science Framework page, the reader can also find the functions that we used 
to calculate p values and confidence intervals. Furthermore, on this page we 
provide the interested reader with some supplementary, exploratory descriptives 
and analyses that were requested by reviewers. 

Predictions for the RT model (online measurement). As stated in our 
Materials and procedure section, we predict that if children are sensitive to the 
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nonadjacent dependencies they will show a disruption peak, meaning that RTs 
increase when the nonadjacent dependencies are temporarily removed (in the 
disruption block) compared to when the nonadjacent dependencies are present (in 
the third training block and the recovery block), for the target items and nontarget 
items. Furthermore, we were interested in seeing whether this disruption peak is 
different for target items (requiring a positive response) versus nontarget items 
(requiring a negative response). Children’s sensitivity to the nonadjacent 
dependency in target items might be different from their sensitivity to the 
nonadjacent dependency in the nontarget items for two reasons. First, the 
disruption peak in nontargets can be seen as a more indirect measure of sensitivity 
as nontarget items are less salient than the target items. Second, people are 
generally faster in giving a positive response (target items: green button) than a 
negative response (nontarget items; cf. López-Barroso et al., 2016). However, as 
exploring this difference was not part of our initial research question, it can be 
seen as a sanity check and therefore this analysis is exploratory (for more details 
see the Results section). We also check whether the disruption peak is different in 
experiment version 1 (target: lut; nontarget: mip) from experiment version 2 
(target: mip; nontarget: lut), to check if counterbalancing yielded the desired 
results (viz. no evidence for a difference between experiment versions). Finally, 
we explored whether age modulates the size of the disruption peak. 

Predictions for the accuracy model (offline measurement). For the 
accuracy measurement in the grammaticality judgment task, if children learn the 
nonadjacent dependency rules, their true mean accuracy scores on the two-
alternative grammaticality judgment task (16 items) will exceed chance level. If 
children do not learn the nonadjacent dependencies, but rather recognize familiar 
items, their true mean scores for familiar items will be higher than those for novel 
items. 

Prediction for the relationship between the online measurement and 
offline measurement. If we find a disruption peak, the relationship between 
children’s online measure of learning and their offline measure of learning will 
be explored. In other words, it will be explored whether children that have a 
relatively large disruption peak also have a relatively high accuracy score on the 
offline grammaticality judgment task. As this comparison does not directly 
answer our research question, this analysis will be reported in the exploratory part 
of the Results section. 
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Prediction for the awareness of nonadjacent dependencies. We predict 
that if children learn the nonadjacent dependencies explicitly (i.e., they can 
verbalize the nonadjacent dependency rule), they will be able to perform the 
sentence completion task accurately in our short debriefing after the experiment 
and we hypothesize that they can verbalize the tep X lut and sot X mip dependency 
rules. For a summary of all confirmatory and exploratory hypotheses, see Table 
3.2. 
 
3.3 Results 
 
In this section, we distinguish between (a) descriptive results that are displayed 
for ease of exposition, (b) confirmatory results of our hypothesis testing, and (c) 
exploratory results that describe data checks and unexpected but interesting 
findings (cf. Wagenmakers, Wetzels, Borsboom, Maas, & Kievit, 2012). Note that 
in general one cannot draw any firm conclusions from exploratory results, so that 
only our confirmatory results can be used as evidence for the usability of RTs as 
an online measure of learning. 
 
3.3.1 Online measure (RTs) 

Online measure: Descriptives. Mean RTs to the target items and 
nontarget items across the training blocks, disruption block, and recovery block 
are visualized in Figure 3.2. As we are interested in the learning trajectories across 
the third training block, disruption block, and recovery block, Table 3.3 lists the 
mean RTs with their residual standard deviation for these blocks only. 

Online measure: Confirmatory results. To test our hypothesis of a 
disruption peak, we fitted a linear mixed-effects model restricted to the RTs of the 
third training block, the disruption block, and the recovery block (hereafter called 
the “confirmatory disruption peak” model; Table 3.4). In order that our estimate 
of the effect of the first contrast (“DisruptionPeak”) of our ternary predictor Block 
represents the numerical height of the disruption peak in milliseconds, the coding 
of our sum-to-zero contrast for the ternary predictor has to contain a difference of 
1: therefore the ternary contrast in the predictor Block (DisruptionPeak) estimated 
how much the true mean RT in the disruption block (which is coded as +#

&
 ) 

exceeds the average of the true mean RT in the third training block (coded as – "
&
) 

and the true mean RT in the recovery block (also coded as – "
&
). This first contrast 
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of the predictor Block (DisruptionPeak) intends to answer our specific research 
question (i.e., whether RTs are disrupted by removal of the nonadjacent 
dependency)8. When we fitted the model, it showed a significantly positive effect 
of disruption peak. The disruption peak is 36 ms (t = +3.8; p = .00038; 95% CI 
[17, 56]). We thus conclude that children become 36 ms slower when we remove 
the nonadjacent dependency structure in target and nontargets items. 

Online measure: Exploratory results. First, we checked that children, 
similarly to adults (López-Barroso, 2016), are faster in giving a positive than a 
negative response (Targetness). The model estimated that children’s positive 
responses (average RT target items; +"

#
) were 52 ms faster than their negative 

responses (average RT nontarget items; −"
#
; t = −4.6; p = .00003; 95% CI [−75, 

−30]), so we can conclude that children are generally faster in giving a positive 
than a negative response. 

 

Table 3.3 Response times in milliseconds (ms) to the target items and 
nontarget items across the third training block, disruption block, and recovery 
block, separated by experiment version. Residual standard deviations (ms) as 
estimated by the linear mixed-effects model in parentheses 
Version 1 (target = lut) 
Trial Type Third training block Disruption block Recovery block 

Target 749 (191) 777 (191) 761 (191) 
Nontarget 842 (191) 869 (191) 836 (191) 
Version 2 (target = mip) 

Target 875 (191) 921 (191) 875 (191) 

Nontarget 900 (191) 921 (191) 891 (191) 
 

  

                                                        
8The second contrast of Block (“PrePostDisruption”) estimated how much the true mean RT in 
the recovery block (+ "

#
) exceeds the true mean RT in the third training block (– "

#
). As this 

contrast does not directly answer our research question, we disregard the model outcome of this 
comparison. 
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Figure 3.2 Participants’ mean raw response times (RTs) across all five blocks of the 
online exposure phase for target items (triangle shaped and dashed line) and nontarget 
items (round shaped and solid line) separately. Please note that these raw RTs are only 
displayed for ease of exposition and that they do not represent the outcome of our 
confirmatory hypothesis testing. Therefore, (descriptive) differences in these raw RTs 
cannot be used to interpret the strength of the effects reported later in this paper. 
 

Second, we explored whether the disruption peak differed between target 
items and nontarget items (interaction between DisruptionPeak and Targetness). 
The disruption peak was 9 ms larger for target items than nontarget items, but not 
statistically significantly different from zero (t = +0.55; p = .58; 95% CI [−23, 
+41]). This means that we have no evidence that the height of the disruption peak 
differs between target items and nontarget items. To further explore this null 
result, we fitted two additional models in which we re-referenced the contrast 
coding. To obtain a t value for the disruption peak in target items, the contrasts 
were set as target 0 (previously −"

#
) and nontarget +1 (previously +"

#
). To obtain 

a t value for the disruption peak in nontarget items, the contrasts were set as target 
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+1 and nontarget 0. For targets, the model estimated a disruption peak of 41 ms 
(t = +2.9; p = .0042; 95% CI [+13, +68]). For nontargets, the model estimated a 
disruption peak of 32 ms (t = +2.7; p = .0068; 95% CI [+9, +55]). Thus, both 
items types show a significant t value, suggesting that the disruption peak is 
present in both target items and nontarget items. 

Third, we checked whether the disruption peak differs between the two 
versions of the experiment (interaction between DisruptionPeak and ExpVersion). 
The model estimate of the interaction between DisruptionPeak and ExpVersion 
was not significantly different from zero (6 ms; t = +0.33; p = .75; 95% CI [−31, 
+43]). This null result for the counterbalancing interaction is good, as it means 
that we have no evidence that the size of the disruption peak differs between the 
two experiment versions and is thus dependent on the target dependency pair in 
focus. To further explore this null result, we again re-referenced the model 
contrasts to obtain a t value for the disruption peak in experiment version 1 
(version 1: 0; version 2: +1) and experiment version 2 (version 1: +1; version 2: 
0). For experiment version 1, the model estimated a disruption peak of 33 ms (t = 
+2.5; p = .012; 95% CI [+8, +59]). For experiment version 2, the model 
estimated a disruption peak of 39 ms (t = +2.9; p = .0054; 95% CI [+12, +67]). 
In both experiment versions, the t value is significant, suggesting that the presence 
of a disruption peak is not dependent on the target dependency pair in focus. 

Fourth and finally, we explored whether the size of the disruption peak is 
modulated by age (interaction between Age and DisruptionPeak). The model 
estimated that the disruption peak gets 5 ms smaller as children grow older, but 
this difference is not statistically significantly different from zero (t = –0.51; p = 
.61; 95% CI [−24, +14]). Thus, we have no evidence that the size of the 
disruption peak differs between younger and older children. 

 
3.3.2 Offline measure (Accuracy grammaticality judgment) 

Offline measure: Descriptives. Children’s individual accuracy scores 
along with the overall mean accuracy score for the two-alternative grammaticality 
judgment task are visualized in Figure 3.3A. As a group, children selected the 
correct utterance with an accuracy of 51%, with individual accuracy scores 
ranging from 25% to 75%. As we also explore whether children scored better on 
familiar than novel items (Generalization), children’s mean accuracy scores to 
these different item types are visualized in Figure 3.3B. 
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Offline measure: Confirmatory results. A generalized linear mixed-
effects model was fit on the accuracy data of the offline two-alternative 
grammaticality judgment task to test whether children’s accuracy scores on the 
task (16 items) exceeds chance level (736 observations; Figure 3.3A; Table 3.5). 
The predictor Generalization estimated by what ratio the children scored better on 
items with a familiar X-element (+"

#
) than on items with a novel X-element (−"

#
). 

The model estimated that the children scored 1.6% above chance level (intercept: 
log odds +0.064, odds 1.07, probability 51.6%), but this was not statistically 
significant from chance (z = +0.81; p = .42; 95% CI [47.5%, 55.7%]). Therefore, 
we cannot conclude that learning of the nonadjacent dependencies can be 
evaluated via a two-alternative grammaticality judgment task.  

Furthermore, the model estimated that the children scored 0.90 times 
better (i.e., lower performance, as this odds ratio is less than 1) on novel 
(Generalization) than familiar items (z = −0.66; p = .51, 95% CI [0.65, 1.25]), but 
this ratio was not significantly different from 1 and therefore we cannot conclude 
that children treat novel items differently from familiar items. 

Offline measure: Exploratory results. We checked whether children’s 
accuracy scores were modulated by ExpVersion (counterbalancing; version 1: 
−"
#
; version 2: +"

#
) and Age. The model estimates of both predictors were not 

significantly different from 1 (Table 3.5), and therefore the results do not 
generalize to the population. 
 
3.3.3 Relationship between online measure and offline measure of NAD 
learning 

Relationship between online measure and offline measure: 
Descriptives. For each child, we calculated an online disruption score and an 
offline learning score (Figure 3.4). Online disruption scores were computed by 
subtracting a child’s average RT in the disruption block from his/her average 
combined RT in the third training block and recovery block (this is analogous to 
how the DisruptionPeak contrast was calculated for the online measure). Hence, 
a positive outcome indicates that a child’s RT in the disruption block was longer 
and thus slower than his/her combined average RT of the third training block and 
recovery block. Offline accuracy scores were obtained by calculating a child’s 
proportion of correct answers on the offline grammaticality judgment task. 
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Figure 3.3 Descriptive visualizations of distribution of (A) the overall mean 
correctness probabilities on the two-alternative grammaticality judgment task and (B) 
the mean correctness probabilities by generalization. The dots represent the individual 
scores, and the cross indicates the overall group mean. Please note that we did not 
obtain these correctness probabilities from the statistical model. These descriptive 
data are only displayed for ease of exposition and do not represent the outcome of the 
generalized linear mixed-effects model. Therefore, (descriptive) differences in this 
plot cannot be used to interpret the strength of the effects reported later in this paper. 
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Relationship online measure and offline measure: Exploratory results. 
The Pearson r correlation coefficient9 between children’s online measure of 
disruption and their offline measure of learning was not statistically significantly 
different from zero (r = –.17; p = .27; Figure 3.4). Therefore, we have no evidence 
that children’s online disruption score correlates with their offline accuracy score. 
 

 
Figure 3.4 Scatter plot and regression line that represents the descriptive association 
between children’s individual online disruption score (x-axis) and children’s 
individual accuracy score on the grammaticality judgment task (y-axis). 
  

                                                        
9Note that this correlation does not consider the between-subject variable ExpVersion. In an 
alternative analysis, we added children’s offline learning scores to the linear mixed-effects 
confirmatory disruption peak model (OfflinePlus model) and compared this OfflinePlus model 
to the confirmatory disruption peak (Table 3.4) by means of the analysis of variance function 
in R. When comparing both models, the OfflinePlus model did not significantly improve the 
confirmatory disruption peak model (χ2 = 1.74; p = .19). Therefore, also when taking a slightly 
different approach that takes the between-subject variable ExpVersion and the random effects 
structure into account when comparing children’s online disruption score and their offline 
accuracy score, we have no evidence that children’s offline learning scores explain the variance 
in their online disruption scores. 
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3.3.4 Awareness questionnaire 
None of the 24 children who were debriefed were able to verbalize either one or 
both of the nonadjacent dependency rules. In the sentence completion task, they 
were most likely to complete the utterance with the target word of the experiment 
version they were in. For example, a child who had to press the green button for 
lut (version 1) replied lut to all the missing words in the sentence completion task, 
regardless of the missing words’ positions and preceding or following words. We 
thus cannot conclude that children acquired any explicit (or at least verbalizable) 
knowledge of the nonadjacent dependency rules. 
 
3.4 Discussion 
 
The present study was designed to investigate whether primary-school-aged 
children are sensitive to nonadjacent dependencies in an artificial language and 
whether this sensitivity to nonadjacent dependencies could be measured (a) online 
by means of recording RTs and (b) offline by means of a two-alternative 
grammaticality judgment task, and (c) whether the online measure of sensitivity 
and the offline measure of sensitivity were related to each other. Our results show 
that primary-school-aged children are sensitive to nonadjacent dependencies in an 
artificial language, at least in our online measure. As predicted, we found that 
when nonadjacent dependency rules were removed, the RTs increased relative to 
the RTs in the blocks that contained the dependency rules, indicating that children 
are sensitive to the nonadjacent dependencies. 

The online measure can thus be seen as a promising advancement in 
measuring NAD learning. On the basis of the offline measure alone, we would 
not have been able to conclude that children were sensitive to the nonadjacent 
dependencies (for similar findings in the SRT literature see Meulemans, van der 
Linden, & Perruchet, 1998). It is important to note here, however, that we cannot 
directly compare our online measure and offline measure, and therefore, we would 
like to stress that we cannot conclude that online measures are better than offline 
measures (false p value comparison). 

We like to speculate, however, that online measures and offline measures 
of nonadjacent dependency learning tap into different representations of acquired 
knowledge. This hypothesis has been proposed in previous studies on statistical 
learning in the auditory domain that also failed to find evidence of a relationship 
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between the online and offline measures of learning (e.g., Franco et al., 2015; 
Isbilen et al., 2017; Misyak et al. 2010). In these studies, it is proposed that online 
measures are more sensitive to the transitional probabilities or co-occurrences 
present in the language whereas good performance on the grammaticality 
judgment tasks requires a comparison of two strings that can only be made from 
a more metalinguistic or explicit decision (Franco et al., 2015). This 
metalinguistic or explicit decision might be especially difficult for children as they 
acquire these skills relatively late. In addition, grammaticality judgment tasks 
similar to the one used in the present study have been argued to be 
psychometrically weak for measuring individual statistical learning performance 
(Siegelman, Bogaerts, & Frost 2017). The latter raises the question as to how 
meaningful our exploration of the relationship between the online measure and 
offline measure of learning is. As we do believe that the online measure is an 
advancement, but not necessarily a substitute for the offline measure of 
nonadjacent dependency learning, we recommend that future studies try to 
improve the psychometric properties of the offline measures (for suggestions, see 
Siegelman, Bogaerts, & Frost, 2017) such that the online and offline measure of 
nonadjacent dependency learning are both informative as to whether children are 
sensitive to the nonadjacent dependency structure. 

Furthermore, our exploratory finding that there is a disruption peak for 
both target items and nontarget items suggests that the online measure of NAD 
learning is not modulated by focus or saliency. One could argue that target items 
are more salient as they require a green button press. Therefore, a child may focus 
on hearing this target word while ignoring all other words. In addition, the target 
items (Version 1: lut; Version 2: mip) are explicitly mentioned during the 
instruction phase. Nontargets, by contrast, are not explicitly mentioned and 
therefore less salient than the targets items. Furthermore, as nontargets require a 
red button press, children might consider them as being less important. We have 
no evidence, however, that these differences in saliency do affect the size of the 
disruption peak. López-Barroso et al. (2016) report similar findings in their adult 
version of the NAD learning experiment. It is important to note that the word 
monitoring task used in the current design does require a minimal level of 
attention to the stimuli, and therefore we cannot draw any conclusions on the 
specific incidental/implicit nature of NAD learning with our task. 

As discussed, the online measure of NAD learning provides a promising 
advancement in measuring NAD learning in typically developing primary-school-
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aged children. Future studies could use the individual online disruption scores to 
further explore the relationship between children’s sensitivity to nonadjacent 
dependencies and their sensitivity to (grammatical) structures in natural language. 
In adults, the online measure of sensitivity to nonadjacent dependencies is 
associated with adults’ online processing (self-paced reading) of relative clauses 
such that better nonadjacent dependency learning is associated with faster 
processing of both subject relative clauses and object relative clauses (Misyak et 
al., 2010). We would be interested in seeing whether the same associations hold 
for typically developing children and whether we can take it one step further by 
investigating online nonadjacent dependency learning in children with language 
related impairments (developmental language disorder [DLD] and developmental 
dyslexia). The latter is of interest as statistical learning deficits have been 
proposed to explain parts of the language problems seen in people with a DLD 
(for meta-analytic reviews, see Lammertink, Boersma, Wijnen, & Rispens, 2017 
[Chapter 2 of this dissertation]; Obeid, Brooks, Powers, Gillespie-Lynch, & Lum, 
2016). In these studies, we see that in people with DLD compared to people 
without DLD, their offline grammaticality judgments are relatively poor. 
Similarly as for typically developing children, it could well be the case that people 
with a language disorder have difficulties explicitly judging grammaticality, 
resulting in lower offline judgment scores, not because they are worse learners, 
but simply because the task is too difficult or taps into a different type of acquired 
knowledge. Insight into the learning trajectories of both groups of learners could 
be beneficial and provide additional information on the statistical learning deficit 
in people with language impairments. 

Finally, we believe that future (longitudinal) studies that aim to 
investigate the developmental trajectory of NAD learning will benefit from the 
inclusion of our online measure of NAD learning. Sensitivity to NADs can now 
be measured across all developmental stages (using different methods, as the 
current task is not feasible with infants; but see Cristia et al., 2016, for alternative 
measures of NAD learning in infants). Capturing NAD learning at different 
developmental stages is important as there is a vivid debate on the developmental 
trajectory of statistical learning (for reviews on this topic, see Arciuli, 2017; 
Krogh, Vlach, & Johnson, 2013; Zwart, Vissers, Kessels, & Maes, 2019). 
 
  



An online measure of auditory verbal statistical learning     69 
 

 
 
 
 
 
 
 

3.5 Conclusion 
 
In conclusion, this study was developed to obtain an online measure of statistical 
learning in children. RTs had already been shown to measure nonadjacent 
dependency learning in adults, and the applicability of this measure has now been 
extended to children. 
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Chapter 4 
Children with developmental language disorder have an 
auditory verbal statistical learning deficit: Evidence from 
an online measure 
 
This chapter is a slightly modified version of the paper that was published as: 
 
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2019). Children with 
developmental language disorder have an auditory verbal statistical learning 
deficit: evidence from an online measure. Language Learning, 70(1), 137–178.  
 
Publicly accessible summary: 
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2019). Children with 
developmental language disorder have difficulties with picking up language 
“rules” from exposure to language. OASIS Summary of Lammertink et al. in 
Language Learning. https://oasis-database.org  
 
Data, materials and scripts for analyses: https://osf.io/8a3yv/ 
 
Abstract 
Successful language use requires the ability to process nonadjacent dependencies 
(NADs) that occur in linguistic input. Learning such structural regularities seems 
therefore crucial for children, and researchers have indeed proposed that language 
problems in children with developmental language disorder (DLD), especially 
problems with grammar, are due to their decreased sensitivity to NADs. Because 
the evidence supporting this claim is scarce, we compared children with DLD (N 
= 36; Mean age = 9.1 years) and without DLD (N = 36; Mean age = 9.1 years) 
performing a learning task with NADs. Using response times as an online measure 
of learning NADs, we observed that participants with DLD were less sensitive to 
NADs than their typically developing peers. The confidence intervals of the 
effect, however, indicated that the effect was probably small in size. We discuss 
clinical and theoretical implications of the present study in light of this effect size. 
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4.1 Introduction 
 
Children with developmental language disorder (DLD) have problems with 
language that significantly impact their social interactions and educational 
progress (Bishop, Snowling, Thompson, & Greenhalgh, 2017). Children with 
DLD often exhibit difficulties across multiple language areas, and these problems 
frequently co-occur with deficiencies in other cognitive domains such as 
attention, working memory, and procedural memory (e.g., Ebert & Kohnert, 2011; 
Montgomery, Evans, & Gillam, 2018; Ullman & Pierpont, 2005). Even though 
DLD is a heterogeneous disorder (Bishop et al., 2017), difficulties with learning 
morphosyntactic and morphological rules are a clinical marker of the disorder. 
More specifically, correct use of morphemes that mark tense and agreement is 
notoriously difficult for these children (e.g., see a meta-analysis on past tense 
production in children with and without DLD by Krok & Leonard, 2015). 

Because the core deficit of the language disorder is still unknown (Bishop 
et al., 2017), theories of its origin keep emerging. Recently, researchers have 
proposed that children with DLD have a statistical learning deficit, meaning that 
they are less sensitive to (statistical) regularities in their (verbal) input (Evans, 
Saffran, & Robe-Torres, 2009; Hsu & Bishop, 2014a; Lammertink, Boersma, 
Wijnen, & Rispens, 2017 [Chapter 2 of this dissertation]; Obeid, Brooks, Powers, 
Gillespie-Lynch, & Lum, 2016; Wijnen, 2013). Detecting and extracting 
regularities (statistical patterns) are thought to be fundamental for the earliest 
stages of language development (Evans et al., 2009), and therefore, it is not 
surprising that deficits in the ability to detect statistical patterns have been put 
forward as an explanation for DLD. Yet, in most studies where researchers have 
investigated statistical learning in DLD, they have focused on statistical learning 
in the visuomotor domain (for a meta-analytic overview, see Lum, Conti-
Ramsden, Morgan, & Ullman, 2014), on statistical learning at the word 
segmentation level (e.g., Evans et al., 2009; Haebig, Saffran, & Weismer, 2017; 
Mayor-Dubois, Zesiger, van der Linden, & Roulet-Perez, 2014), or on auditory 
verbal statistical learning in adolescents (Grunow, Spaulding, Gómez, & Plante, 
2006; Hsu, Tomblin, & Christiansen, 2014). In most of these studies, researchers 
did not report on the learning of nonadjacent dependencies (NADs), which is a 
central feature of syntactic processing (Wilson et al., 2018). Therefore, in the 
present study, we compared NAD learning by children with and without DLD to 
investigate auditory verbal statistical learning in children with and without DLD. 
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4.1.1 Background literature 
In classical NAD learning experiments, researchers have auditorily exposed 
participants to strings of pseudowords in an artificial language. Unbeknownst to 
the participants, the strings in the language follow a statistical pattern: They 
consist of three pseudowords (e.g., tep wadim lut, sot wadim mip), and there is a 
NAD rule governing the relationship of the first element (tep or sot) and the last 
element (lut or mip), such that the first element predicts the occurrence of the third 
element (i.e., the co-occurrence probability between the first element and third 
element is 1.0). After a certain period of exposure to the language, participants 
perform a grammaticality judgment task in which they are tested with strings that 
either conform to the NAD rules (e.g., tep wadim lut) or violate the NAD rules 
(e.g., *sot wadim lut, where the asterisk indicates a violation of the rule). 
Participants are asked to indicate whether the string with which they are presented 
follows the same pattern as the strings in the exposure phase or follows a different 
pattern. If participants are sensitive to the NAD rules, they should endorse strings 
that conform to the NAD rules more frequently than strings that violate the NAD 
rules, and thus their correctness probabilities should exceed chance level (Gómez, 
2002). 
 
4.1.2 Statistical learning and its relation to language proficiency 
Researchers have found a link between statistical learning and language 
proficiency in studies where they have compared statistical learning performance 
in people with language learning disabilities to statistical learning performance in 
people without such disabilities. Three meta-analyses have reported a statistical 
learning deficit in people with DLD (Lammertink et al., 2017 [Chapter 2 of this 
dissertation]; Lum et al., 2014; Obeid et al., 2016). From these meta-analyses (and 
additional studies published subsequently), it became clear that, although there 
were ample studies on statistical learning of children with DLD in the visuomotor 
domain (approximately 11), there were fewer studies on auditory statistical 
learning in this group of children (four studies) and that there was only one 
(recently published) study on auditory NAD learning (reported as specific co-
occurrence probability) in children with DLD (Iao, Ng, Wong, & Lee, 2017). 
Researchers in three of the four studies of auditory statistical learning in children 
with and without DLD assessed children’s sensitivity to statistical structure at the 
word segmentation level (Evans et al., 2009; Haebig et al., 2017; Mayor-Dubois 
et al., 2014). In these studies, participating children listened to a continuous 
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stream of auditorily presented syllables in which the transitional probability 
between adjacent syllables within words was higher (1.0) than the transitional 
probability between adjacent syllables that crossed word boundaries (e.g., .33). 
Sensitivity to these differences in transitional probability guided the participants 
in extracting words from the continuous speech stream. In all three studies, the 
children with DLD were less sensitive to the differences in transitional 
probabilities than the typically developing children. 

In the fourth study, Lukács and Kemény (2014) used an artificial 
grammar learning experiment to assess differences in the ability to extract 
regularities from auditory sequences between children with and without DLD. 
The researchers constructed the regularities in the auditory sequences to follow 
different rules, with varying patterns of transitional probability (at the adjacent 
and nonadjacent level) and with sequences defined at the level of categories 
instead of at the level of items. As they had hypothesized, Lukács and Kemény 
found that a significantly smaller proportion of the participating children with 
DLD showed evidence of learning the rules compared to that of the typically 
developing children. Finally, Iao et al. (2017) investigated auditory NAD learning 
in children with DLD and in those without DLD and observed that, when using 
an offline measure of learning, the children with DLD were less sensitive to NADs 
than the typically developing children. Taken together, although there has been 
some work on auditory statistical learning in children with DLD, there have been 
only two studies in which researches have investigated this type of learning with 
designs that modelled the acquisition of grammatical structures (Iao et al., 2017; 
Lukács & Kemény, 2014). Of these two studies, only Iao et al. (2017) investigated 
children’s sensitivity to NAD structures specifically. Given that children with 
DLD mainly exhibit language difficulties that manifest themselves with NAD 
structures such as subject–verb agreement and past tense inflection, we deemed it 
important to further investigate children’s sensitivity to this specific co-
occurrence probability. In a design different from Iao et al.’s (2017), we assessed 
children’s sensitivity to NADs using both an online and an offline measure of 
learning instead of using an offline measure only. In the next section, we discuss 
how and why it is important that the present study complemented this work by 
using an online measure of NAD learning. 

Another source of evidence for a link between statistical learning and 
language proficiency has been found in studies showing that individual 
differences among adults without language learning disabilities while they 
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performed a NAD learning task predicted their comprehension and processing of 
dependencies in relative clause sentences (Misyak & Christiansen, 2012; Misyak, 
Christiansen, & Tomblin, 2010). In these studies, adults were asked to read 
sentences containing relative clauses like “the reporter that attacked the senator 
admitted the error.” Participating adults’ processing time measured through a self-
paced reading task (Misyak et al., 2010) and their understanding of these 
sentences (Misyak & Christiansen, 2012) correlated with their performance on an 
online NAD learning task (Misyak et al., 2010) and an offline NAD learning task 
(Misyak & Christiansen, 2012). The fact that these adults needed to track the NAD 
between the head noun reporter and main verb admitted in order to understand 
the sentence might have explained these correlations. To the best of our 
knowledge, researchers have not investigated the specific links between NAD 
learning and primary-school-aged children’s understanding and/or processing of 
relative clause sentences. There may be two explanations for this. First, there have 
been only two (published) studies on NAD learning in primary-school-aged 
children (Iao et al., 2017; Lammertink, van Witteloostuijn, Boersma, Wijnen, & 
Rispens, 2019 [Chapter 3 of this dissertation]). Both these studies evaluated NAD 
learning in children but did not correlate children’s individual NAD learning 
performance to an individual measure of relative clause sentence processing 
and/or understanding. And second, it takes children a relatively long period of 
time to understand and correctly use relative clause structures (for an overview, 
see Duinmeijer, 2016). Spit and Rispens (2018) used relative clause constructions 
to investigate the relationship between visuomotor statistical learning, measured 
through a serial reaction time task (Nissen & Bullemer, 1987), and syntactic 
proficiency in gifted primary-school-aged children and their typically developing 
peers. Even though the gifted children scored better on the relative clause 
comprehension task than their typically developing peers, Spit and Rispens found 
no evidence for or against a relationship between visuomotor statistical learning 
and children’s relative clause sentence understanding. 

Relative clause constructions are not the only linguistic structure 
governed by NADs. NADs are also present in other morphological and 
morphosyntactic constructions such as subject–verb agreement, plural nouns, and 
the past tense. Many subtests of standardized language test batteries assess, among 
other grammatical structures, children’s production and understanding of these 
constructions. In a recent meta-analysis, Hamrick, Lum, and Ullman (2018) 
reported a statistically significant positive correlation between performance on a 
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serial reaction time task and (morpho)syntactic production and comprehension 
tasks from standardized language test batteries: Test for the Reception of 
Grammar (Bishop 2003), Épreuve de compréhension syntaxico-sémantique: 
Adaptation française du TROG: Reception of Grammar Test (Lecocq, 1998), 
Évaluation du langage oral (Khomsi, 2001), Batterie langage oral, langage écrit, 
mémoire, attention (Chevrie-Muller, Maillart, Simon, & Fournier, 2010), and 
Action Picture Test (Renfrew, 2003) in typically developing children. The same 
link has recently been investigated in a meta-analysis combining children with 
DLD and without DLD (Lammertink, Boersma, Wijnen, & Rispens, under review 
[Chapter 6 of this dissertation]). In this meta-analysis, Lammertink and colleagues 
found no evidence for or against a correlation between serial reaction time 
performance and expressive grammar knowledge in the pooled group of children. 
This may not be surprising given that most studies on the relationship between 
serial reaction time performance and grammar knowledge in children with DLD 
reported statistically nonsignificant (both positive and negative) correlations: 
positive (Gabriel, Maillart, Guillaume, Stefaniak, & Meulemans, 2011; Gabriel, 
Stefaniak, Maillart, Schmitz, & Meulemans, 2012; Lum, Conti-Ramsden, Page, 
& Ullman, 2012) and negative (Desmottes, Meulemans, & Maillart, 2016a; 
Gabriel, Meulemans, Parisse, & Maillart, 2015). Interestingly, Lammertink et al. 
also found no evidence that the strength of the relationship between serial reaction 
time task performance and expressive grammar knowledge differs between 
children with and without DLD. 
 
4.1.3 Statistical learning and its methodological challenges 
Researchers have raised concerns regarding the interpretability of the outcome 
measure of the design used in classical statistical learning experiments 
(Siegelman, Bogaerts, & Frost, 2017). A first concern has been that metalinguistic 
skills or explicit knowledge might have influenced the judgment measure. If 
indeed performance depends on metalinguistic skills, this impedes valid 
assessment of children’s learning in a NAD task because children acquire 
metalinguistic skills relatively late (Bialystok, 1986). Also, the acquisition of 
metalinguistic knowledge may rely more on rote learning strategies rather than on 
statistical learning (or rule learning) strategies. A second concern had been that 
children tend to accept all strings, and thus they often show a yes bias when they 
are asked to make judgments (Ambridge & Lieven, 2011). Because an increasing 
number of researchers have stressed the importance of measuring statistical 
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learning in a different way than through grammaticality judgments, several novel 
measures have been proposed. Following this trend, we decided to use response 
times as an online measure of NAD learning, in particular measuring the 
disruption peak that occurs in the response time pattern when items are presented 
that are discordant with NAD rules. Previous work has shown that disruption 
peaks reflect sensitivity to NADs in adults (López-Barroso, Cucurell, Rodrìgez-
Fornells, & de Diego-Balaguer, 2016; Misyak et al., 2010; Vuong, Meyer, & 
Christiansen, 2015) and in primary-school-aged children (Lammertink, van 
Witteloostuijn et al., 2019 [Chapter 3 of this dissertation]). The use of disruption 
peaks as an index of statistical learning has its roots in the serial reaction time task 
literature (Nissen & Bullemer, 1987), and the reason to work with disruption 
peaks rather than a decrease in response times over the first few training blocks is 
that such a response time decrease is not necessarily the result of statistical 
learning. The decrease may also arise as a consequence of practice, which makes 
it difficult to disentangle statistical learning from motor or cue learning (Kidd & 
Kirjavainen, 2011, but see Kuppuraj, Duta, Thompson, & Bishop, 2018, for a 
potential solution to this problem). 

Despite our concerns about the interpretability of the offline measures of 
statistical learning, we measured participants’ behaviour in an offline forced-
choice task as well. Response times are not necessarily a substitute for the 
judgment measure. It could for instance be that the online reaction time measure 
and the offline judgment measure tap into different representations of acquired 
knowledge or that they are sensitive to different learning strategies (see also 
Franco, Eberlen, Destrebecqz, Cleeremans, & Bertels, 2015; Isbilen, McCauley, 
Kidd, & Christiansen, 2017; Misyak et al., 2010). 
 
4.1.4 The present study 
To summarize, the aim of the present study was to investigate auditory verbal 
statistical learning of NADs in children with and without DLD. Our confirmatory 
research question tested the hypothesis that children with DLD are less sensitive 
to NADs than their typically developing peers; hence, we expected children with 
DLD to show a statistical learning deficit. We evaluated NAD learning in both 
groups of children through an online measure in which the size of a disruption 
peak in response times was used as an estimate of children’s sensitivity to the 
NADs. We predicted that children with DLD would have an auditory verbal 
statistical learning deficit if their disruption peak was smaller than the disruption 
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peak observed in their typically developing peers. As explained later, we used the 
interaction between the group variable and the predictor variable that estimated 
the size of the disruption peak to answer our confirmatory research question. 
Because we used verbal material in the auditory domain in our tasks, we expected 
that verbal short-term memory (Hsu & Bishop, 2011) and verbal working memory 
(Misyak & Christiansen, 2012; Wilson et al., 2018) might also play a role in 
participants’ successful detection of the NAD rules. We therefore controlled for 
these measures in our statistical model. 

Besides our confirmatory research question, we also used data from the 
present study to explore four additional questions. First, one anonymous reviewer 
asked us to explore whether the difference in participants’ response times between 
the first training block and the last training block (third block) was larger for 
typically developing children than for children with DLD, and second, whether 
the difference in response times between this first training block and the last 
training block correlated with the size of children’s disruption peak. Third, 
because we investigated differences in online NAD learning between children 
with and without DLD (confirmatory research question), we also explored more 
specifically the association between NAD learning and two tasks that measured 
children’s knowledge of grammatical rules in the expressive domain. Finally, 
given the abovementioned methodological considerations regarding the use of 
offline measures of statistical learning, we had some concerns as to whether we 
could assess NAD learning through an offline measure; this was explored by 
evaluating children’s behaviour in an offline forced-choice task. 
 
4.2 Method 
 
4.2.1 Participants 
We recruited 37 children with DLD and 59 typically developing children aged 
between 7 and 11 years to participate in our study10. At the end of the study, we 

                                                        
10The present study was part of a larger research project on the relationship between statistical 
learning, grammar, and literacy acquisition in children. Consequently, we have also reported 
data from the same group of participants with DLD and typically developing participants in 
Lammertink, Boersma, Rispens and Wijnen (2020 [Chapter 5 of this dissertation]) and 
Lammertink, Boersma, Wijnen and Rispens (under review [Chapter 6 of this dissertation]). Van 
Witteloostuijn, Boersma, Wijnen, and Rispens (2019a, 2019b, submitted) have also described 
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excluded one participant with DLD and five typically developing participants. 
The final sample included 36 children with DLD (8 females, 28 males) and 36 
typically developing children (9 females, 27 males). We informed everyone 
involved in the recruitment process that recruitment and testing had to fit within 
a predetermined testing period that ran from January 2017 to March 2018. Thus, 
we recruited and tested as many children as possible in the available recruitment 
time. We nevertheless expected the power of the experiment to detect a medium-
sized effect to be guaranteed because the number of participants per group (36) 
was large for this type of study (see Discussion section). The widths of the 
resulting confidence intervals would reveal whether this expectation was 
warranted. 

We obtained ethical approval from the ethical review committee of the 
University of Amsterdam, Faculty of Humanities. For the participants with DLD, 
their parents or caregivers gave informed consent prior to their children’s 
participation in the study. Typically developing children were enrolled on an opt-
out basis. Table 4.1 provides details of participants’ age, nonverbal intelligence, 
and socioeconomic status. We derived their socioeconomic status from a 
combined score that took the mean education level, mean income, and mean 
working status of the people living in a particular district (defined per zip code) 
into account (Sociaal en Cultureel Planbureau, 2017). This score has a Dutch 
average of 0, and the higher the score, the higher the socioeconomic status. We 
based the socioeconomic status of the participants with DLD on either their home 
address (N = 22) or school address (N = 14). We based the socioeconomic status 
of the typically developing participants on their school address (four different 
schools across the Netherlands). 
 
4.2.2 Recruitment and inclusion of children with DLD 
We recruited the participating children with DLD through four national 
organizations in the Netherlands (Royal Dutch Auris Group, Royal Dutch 
Kentalis, Viertaal, and Pento), through an association for parents of children with 
DLD (FOSS/ Stichting Hoormij), and through self-employed speech therapists. 
All participants in this group had been diagnosed with DLD by licensed clinicians 

                                                        
a subset of the typically developing participants in separate studies, with different research 
questions, and a different clinical group (developmental dyslexia). 
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and met the following criteria: (a) they had scored 1.5 standard deviations below 
the norm on two out of four subscales (speech production, auditory processing, 
grammatical knowledge, lexical semantic knowledge) of a standardized language 
assessment test battery administered by a licensed clinician (but not as part of our 
own test battery); (b) at least one of their parents was a native speaker of Dutch; 
and (c) none had been diagnosed with autism spectrum disorder, attention deficit 
hyperactivity disorder, or with other (neuro)physiological problems. Finally, our 
test battery included the Raven Progressive Matrices subtest (Raven, Raven, & 
Court, 2003), a standardized measure of nonverbal intelligence, on which the 
participants had to obtain a percentile score of at least 17% to be included in our 
final sample. A percentile score of 17% was the lower bound of the normal range, 
and therefore, if participants had a percentile score below 17%, they were assessed 
as having below average nonverbal intelligence. At the time that we started 
recruitment for this project, children with language difficulties had to have a 
nonverbal intelligence score of at least average to get a diagnosis of specific 
language impairment/DLD in the Netherlands. This was also why we decided to 
include only children who met this nonverbal intelligence criterion (and thus a 
Raven Progressive Matrices score of at least 17%). Only shortly thereafter, Bishop 
et al. (2017) made their recommendation that low nonverbal intelligence should 
not preclude a diagnosis of DLD. At the end of the study, we excluded one 
participant with DLD because of an only recently diagnosed hearing problem. 
 
4.2.3 Recruitment and inclusion of typically developing children 
We recruited the typically developing children from four different primary 
schools across the Netherlands. Because these typically developing children had 
never taken a standardized language assessment test battery prior to participating 
in the present study, we used their scores on the Raven Progressive Matrices 
subtest (Raven et al., 2003) and a subset of the language tasks (see below) that 
were administered as part of our own test battery as inclusion criteria. We 
excluded five typically developing children because they scored below the normal 
range on the Raven Progressive Matrices subtest and/or they scored below the 
normal range on two or more of the following language tasks: the Een-Minuut-
Test, a one-minute real-word reading test (Brus & Voeten, 1979); the Klepel, a 
two-minute nonce-word reading test (van den Bos, Spelberg, Scheepstra, & de 
Vries, 1994); the Schoolvaardigheidstoets Spelling, a test of  
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spelling (Braams & de Vos, 2015); and/or the Clinical Evaluation of Language 
Fundamentals–Dutch version (Semel et al., 2010), a test of sentence recall. The 
normal range included scores from 1 standard deviation below the standardized 
mean (norm scores: M = 10; percentiles: M = 50%) to scores 1 standard deviation 
above the standardized mean, thus extending between 8 and 12 (norm scores) or 
between 17% and 86% (percentiles). Additionally, we excluded one typically 
developing participant because this child was diagnosed with attention deficit 
hyperactivity disorder. From the remaining 53 typically developing children, we 
selected 36 participants who matched best our DLD sample, taking age 
(maximum age difference of three months), gender, socioeconomic status, and 
nonverbal intelligence into account. 
 
4.2.4 Materials 
Measure of statistical learning. We used a NAD learning task to measure 
participants’ sensitivity to statistical structure in an artificial language (see 
Lammertink, van Witteloostuijn et al., 2019 [Chapter 3 of this dissertation], for 
an elaborate description of this task, and see López-Barroso et al., 2016, for its 
original adult version). Disruption in response times (i.e., slower response times 
to items in which NAD rules are disrupted compared to items that satisfy NAD 
rules) served as our measure of participants’ sensitivity to the NADs. We 
presented the NAD task on a Microsoft Surface 3 tablet computer using the E-
prime software (Version 2.0; 2012). We recorded response times with an external 
button box attached to the computer. We played the auditory stimuli to the 
participants over Sennheiser HD 201 headphones. 

During the online part of the NAD task, we exposed the participants to 
three-element utterances of an artificial language and asked them to press either a 
green button if the third element that they heard was a specific target (e.g., lut) or 
a red button if the third element was not this specific target (see Figure 4.1). In all 
utterances, Element 1 was a monosyllabic Dutch pseudoword (e.g., tep), Element 
2 was a bisyllabic Dutch pseudoword (e.g., wadim), and Element 3 was again a 
monosyllabic Dutch pseudoword (e.g., lut). We divided the utterances into three 
trial types. Two types comprised a NAD between Element 1 and Element 3: tep 
X lut or sot X mip. In these examples, X indicated the bisyllabic element that was 
drawn from a pool of 24 different elements (see Table 4.2 for the list of elements) 
following Gómez (2002). There were two versions of the experiment with either 
lut (version 1) or mip (version 2) as the target word. We randomly assigned 
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participants to one of the two versions. We divided the NAD types into target 
trials ending with the target word (Version 1: lut; Version 2: mip), which thus 
required participants to press a green button, and nontarget trials ending with the 
nontarget word (Version 1: mip; Version 2: lut), which thus required participants 
to press a red button. The third type were filler trials, which did not contain a NAD 
(and no lut or mip), and therefore they always required participants to press a red 
button. 

The experiment consisted of five blocks. Four of these blocks (Training 
Block 1, Training Block 2, Training Block 3, and a fifth recovery block) contained 
target trials and nontarget trials with the NAD rules, as we described above (i.e., 
NAD blocks). In these blocks, the third element of the target trials and nontarget 
trials could thus be predicted from the first element. The fourth block (disruption 
block) was exceptional: It contained target trials and nontarget trials in which the 
dependency between the first and third elements was disrupted, that is, the target 
element or nontarget element (lut or mip) was now preceded by a variable filler 
element (f-element), that is, never tep or sot, in the first position. In these trials, 
the third element of the target trials and nontarget trials could thus no longer be 
predicted from the first element. If participants were sensitive to the NADs, we 
predicted that their response times to target trials and nontarget trials in the 
disruption block would be slower than their response times to these items in the 
third training block and in the recovery block. We refer to this difference in 
response times as the disruption peak.  
 

Table 4.2 Overview of the 24 X-elements and 24 f-elements used to build the 
target items, nontarget items and filler items 
 
X-elements f-elements 
banip, biespa, dapni, densim, domo, 
fidang, filka, hiftam, kasi, kengel, 
kubog, loga, movig, mulon, naspu, 
nilbo, palti, pitok, plizet, rasek, seetat, 
tifli, valdo, wadim 

bap, bif, bug, dos, dul, fas, fef, gak, 
gom, hog, huf, jal, jik, keg, ket, kof, 
naf, nit, nup, pem, ves, wop, zim, zuk 
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Figure 4.1 Example of the nonadjacent dependency task. In this example, the green 
button is on left and the red button is on right. If a child presses the green button, the 
banana thus appears on left and if a child presses the red button, the banana appears 
on right.  
 

All NAD blocks contained 24 target trials (i.e., tep X lut in version 1), 24 
nontarget trials (i.e., sot X mip in version 1), and 12 filler trials (i.e., no NAD and 
ending in something other than lut or mip). The disruption block contained 12 
target trials (i.e., no NAD, but lut final in Version 1), 12 nontarget trials (i.e., no 
NAD, but mip final in Version 1), and six filler trials (i.e., no NAD and ending in 
something other than lut or mip). 

After completing these five blocks, participants received instructions for 
the offline forced-choice task. We told them that they would hear an utterance and 
that they had to decide whether they had heard this utterance previously. We 
presented participants with 18 utterances; two of these utterances had a 
completely different structure from the utterances in the online phase (*kasi kubog 
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kengel and *banip dapni nilbo) and served as control items. The remaining 16 
utterances were actual test items. These test items consisted of four types: (a) 
correct NAD items with familiar X-elements (tep palti lut; sot densim mip; tep 
hiftam lut; sot fidang mip), (b) incorrect NAD items with familiar X-elements 
(*sot filka lut; *tep loga mip; *sot plizet lut; *tep rasek mip), (c) correct NAD 
items with novel X-elements (tep sulep lut; sot dieta mip; tep nukse lut; sot noeba 
mip), and (d) incorrect NAD items with novel X-elements (*sot rolgo lut; *tep 
gopem mip; *sot wiffel lut; *tep dufo mip). The familiar X-elements were eight of 
the 24 X-elements that the participants had already heard during the exposure 
phase (palti, densim, hiftam, fidang, filka, loga, plizet, rasek; see Table 4.2). The 
two item types with novel X-elements contained eight novel X-elements (sulep, 
dieta, nukse, noeba, rolgo, gopem, wiffel, dufo). We added these items to test for 
generalization of the rule. The participants had to declare verbally whether they 
had heard the utterance previously, and the experimenter recorded their responses 
in E-prime. In total, the experiment took approximately 30 minutes: 20 minutes 
for the online phase; 5 minutes for the offline phase; and 5 minutes for 
instructions, practice, and pauses. 
  Measures of morphosyntax and morphology. We administered two 
measures to tap into participants’ expressive knowledge of grammatical rules: the 
sentence recall task and the word structure task from the Clinical Evaluation of 
Language Fundamentals–Dutch version (Semel et al., 2010). We used the 
sentence recall task as an index of participants’ morphosyntactic knowledge. In 
this task, we asked participants to repeat sentences with increasing length and 
complexity. Following the guidelines of the Clinical Evaluation of Language 
Fundamentals–Dutch version, we assigned points to responses based on the 
number of errors that participants made in the recalled sentence, with 3 points for 
fully correct repetitions, 2 points for repetitions with one error, 1 point for 
repetitions with two or three errors, and 0 points for repetitions with four or more 
errors. The task terminated when participants scored 0 points on five consecutive 
sentences. The maximum number of points that participants could obtain was 93. 

We assessed participants’ morphological knowledge at the word level 
with the word structure task. In this task, we orally presented participants with 30 
incomplete sentences that described a picture and asked participants to complete 
the sentences. Missing words were either plurals, pronouns, inflectional 
morphemes, derivational morphemes, or comparatives. We awarded 1 point for 
each correct completion, with a maximum total of 30 points. 
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Other cognitive and language measures. We also collected measures of 
participants’ nonverbal intelligence (Raven et al., 2003), receptive vocabulary 
size (Peabody Picture Vocabulary Task-III-NL; Schlichting, 2005), verbal short-
term memory (Digit Span Forward; Semel et al., 2010), verbal working memory 
(Digit Span Backward; Semel et al., 2010), and sustained attention (Tel mee! 
subtest from the Test of Everyday Attention for Children; Manly, Robertson, 
Anderson, & Nimmo-Smith, 2010). Table 4.3 provides a short description of each 
measure. 
 
4.2.5 Procedure 
The present study was part of a larger research project about the relationship 
between statistical learning and grammar and literacy acquisition in children with 
and without DLD, and therefore, the total task battery contained more tasks than 
we have reported here. All children who participated in the present study 
completed this full battery, which took two to four sessions (each lasting 
approximately 1 hour), spread over 2 to 3 weeks for each child. Each test session 
started with a statistical learning task – the NAD learning task, a visual statistical 
learning task (see Chapter 5 of this dissertation), or a serial reaction time task (see 
chapter 6 of this dissertation) – and was then followed by a set of cognitive and 
language measures. Participants completed the verbal short-term memory task 
and verbal working memory task in the same session as they did the NAD learning 
task. They completed the sentence recall task, word structure task, sustained 
attention task, and the Raven Progressive Matrices subtest in the session with the 
serial reaction time task, and finally, they completed the Peabody Picture 
Vocabulary Test-III-NL task in the session with the visual statistical learning task. 
We counterbalanced the order in which participants performed the different 
sessions. The results for the other statistical learning tasks are reported in 
Lammertink, Boersma, Rispens, and Wijnen (2020 [Chapter 5 of this 
dissertation]) and Lammertink, Boersma, Wijnen, and Rispens (under review 
[Chapter 6 of this dissertation]). For the typically developing participants, we 
collected the data in a quiet room at their schools. We collected data for the 
participants with DLD either in a quiet room in their schools (N = 22) or in their 
homes (N = 14). 
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Table 4.3 Description of other cognitive and language measures used in the study 
Task Description Possible 

range 
(raw scores) 

Raven’s Progressive 
Matrices (Raven et al., 
2003) 
 

Nonverbal intelligence 
Children are asked to complete a 
visual pattern by selecting the 
correct missing pattern from 
six or eight possible options. 
 

 
1–60 

Peabody Picture 
Vocabulary Test-III-NL 
(Schlichting, 2005) 
 

Receptive vocabulary size 
Children hear a word a have to 
choose the correct referent out of 
four pictures. 
 

1–204 

Digit Span Forward from 
the Clinical Evaluation of 
Language Fundamentals  
(Semel et al., 2010) 
 

Verbal short-term memory 
Children are asked to immediately 
repeat a number of sequences of 
increasing length in the same 
order. 
 

0–16 

Digit Span Backward from 
the Clinical Evaluation of 
Language Fundamentals  
(Semel et al., 2010) 
 

Verbal working memory 
Children are asked to immediately 
repeat a number of sequences of 
increasing length in reversed 
order. 
 

0–14 

Tel Mee! From the Test of 
Everyday Attention for 
Children (Manly et al., 
2010) 
 

Sustained attention 
Children are asked to count 
sounds. Each trial has a different 
number of sounds to count 
(ranging from 9 sounds to 14 
sounds). The pauses between the 
sounds in each trial are of variable 
length. 

0–10 
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4.2.6 Data analysis 
We have provided all data and scripts (including full model outcomes) used in the 
analyses through the Open Science Framework (https://osf.io/8a3yv). During the 
online part of the statistical learning task, we recorded both participants’ accuracy 
and response times. For our confirmatory analysis, we selected participants’ 
correct responses to target and nontarget items only in the third training block, the 
disruption block, and the recovery block. We measured response times in 
milliseconds from the onset of the target item or the nontarget item. For analysis, 
we normalized the raw response times to make the data satisfy more closely the 
assumption of normally distributed model residuals, which is a central assumption 
of linear mixed-effects model analysis. We used package lme4 (Version 1.1.17; 
Bates, Maechler, Bolker, & Walker, 2015) for the R programming language (R 
Core Team, 2018) to conduct the analyses. The advantage of working with 
transformed response time data (in general) over excluding outlier observations 
in order to satisfy model assumptions is that one can include all observations and 
does not have to apply an arbitrary criterion, which can vary enormously between 
studies, for removing observations (Simmons, Nelson, & Simonsohn, 2011). 
Visual inspection of the model residuals from our raw response time model and 
normalized response time model indeed indicated that the residuals of the model 
with normalized response times were more symmetrically distributed than the 
residuals of the model with raw response times (see histograms at 
https://osf.io/8a3yv). Therefore, we decided to continue working with normalized 
response times. 

We normalized the response time data with a rank-order transformation. 
We could not apply the commonly used log-transformation because participants’ 
response times could be negative (i.e., if a participant had learned to predict the 
third word from the first word and thus pressed the button before the onset of the 
third word). In transforming the observations, we first sorted all K raw reaction 
time observations in ascending order, then assigned each ranked observation a 
ranking number r (from 1 to K; Baguley, 2012, pp. 254–358). Subsequently, we 
normalized the ranked observations by replacing each observation by the (r − 
0.5)/K quantile of the normal distribution. This normalization allows researchers 
to interpret the resulting response time values as optimally distributed z values.  

We analysed these normalized response time data using a linear mixed-
effects model that fitted normalized response time as a function of the ternary 
predictor variable block (the third training, disruption, and recovery blocks), the 
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binary predictor variables Group (DLD, typically developing), Targetness (non-
target, target), and ExpVersion (version 1, version 2), and the continuous predictor 
variables Verbal short-term memory performance and Verbal working memory 
performance. We refer to this model as the “confirmatory disruption peak” model. 
The confirmatory disruption peak model included the main effects of the predictor 
variables Block, Group, Targetness, and ExpVersion, as well as all interactions 
between these predictors. We included Verbal short-term memory performance 
and Verbal working memory performance as main effects and in interaction with 
only the predictor variables Block and Group because these were the predictors 
of interest for our confirmatory analysis. We coded all binary and ternary 
predictors in the model with orthogonal sum-to-zero contrasts (for the specific 
contrast settings see Appendix A4), and we centered the continuous variables and 
scaled them with the scale function in R (R Core Team, 2018).  

Finally, the random-effects structure of the confirmatory disruption peak 
model contained by-subject (N = 72) and by-item (X-element: N = 24) random 
intercepts, by-subject random slopes for the main effects of Block and Targetness, 
and by-item random slopes for the main effects of Group and of ExpVersion11. 
This was the maximal random effects structure justified by the design: It 
contained by-subject random slopes for the within-subject predictor variable 
block of our confirmatory research question and by-item random slopes for the 
between-subject predictor variable group of our confirmatory research question 
(Barr, Levy, Scheepers, & Tily, 2013; Bates, Kliegl, Vasishth, & Baayen, 2018). 

We hypothesized that, if participants were sensitive to the NADs, their 
normalized response times to target and to nontarget items should show a 
disruption peak (Lammertink, van Witteloostuijn et al., 2019 [Chapter 3 of this 
dissertation]). Furthermore, if NAD learning is related to language proficiency, 
then this disruption peak should have been lower (or even nonexistent) in the 
participants with DLD compared to the typically developing participants. The size 
                                                        
11In a first step, we fitted an online disruption peak model that included a per-subject random 
slope for the interaction between the variables Block and Targetness and a per-item slope for 
the interaction between the variables ExpVersion and Group status as well. However, the profile 
method failed to compute a confidence interval for our predictor of interest for this maximal 
model. When we removed the near-to-perfect correlation between the interactions in our 
random effects structure (Bates et al., 2018), the profile method worked. We were allowed to 
remove these interactions because they were not of interest to our confirmatory research 
question (e.g., we report no p values for them). For more details, see the R markdown file in 
the Supplementary Information online. 
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of the disruption peak was estimated by the first contrast of the predictor variable 
Block (with the disruption block coded as +#

&
 and both the third training block 

and the recovery block coded as −"
&
). We expected that this predictor in 

interaction with the predictor Group (typically developing coded as +"
#
  and DLD 

coded as −"
#
 ) would allow us to answer our confirmatory research question. The 

predictor variables ExpVersion, Verbal short-term memory, and Verbal working 
memory were not of direct interest for our research question, but we included 
them to control for their potential influence on learning. We decided not to control 
for sustained attention because we had no evidence that our participants with DLD 
differed from our typically developing participants on this measure (see Tel mee! 
results in Table 4.3). We assessed the statistical significance of the predictors via 
95% profile confidence intervals and obtained the corresponding p values from 
the profiles iteratively (see get.p.value function in R functions script at 
https://osf.io/8a3yv). Unless we explicitly specify so otherwise, our significance 
tests assessed whether a value is reliably different from 0.  

In addition to our confirmatory research question, we explored four other 
questions. We cannot draw any confirmatory conclusions from these additional 
exploratory analyses. First, guided by our descriptive visualization of 
participants’ raw response times across all five blocks of the online exposure 
phase (see Figure 4.2), one anonymous reviewer asked us to explore whether the 
difference between participants’ response times in the first training block and their 
response times in the third training block (i.e., the response time gain) was larger 
for typically developing participants than for participants with DLD. In exploring 
this first issue, we analysed participants’ normalized response time data across the 
first three training blocks with a model that we designated as the “exploratory 
learning speed” model and that was very similar to the confirmatory disruption 
peak model (see above and see https://osf.io/8a3yv). The difference was that this 
model contained data from the first three training blocks (instead of the third 
training block, disruption block, and recovery block) and thus the ternary 
predictor variable Block was now replaced by the ternary predictor variable 
Training block. Because the effect of interest lay in the size of participants’ 
response time gain from the first training block to the third training block, we set 
the contrasts of the predictor training block such that a positive estimate of the 
second contrast of the predictor (with Training Block 1 coded as +"

#
 and Training 

Block 3 coded as −"
#
) estimated this response time gain. We expected that the 
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interaction of the predictor variable Response time gain with the predictor variable 
Group, would answer this first exploratory question. 

The second question that the anonymous reviewer asked us to explore 
was whether there was a correlation between participants’ response time gain and 
the size of their disruption peak. In exploring this issue, we first extracted with 
the ranef function in R (Bates et al., 2015) participants’ random slopes for 
Response time gain (from the exploratory learning speed model) and their random 
slopes for DisruptionPeak (from the confirmatory disruption peak model) and 
used these random slopes as individual response time gains and individual 
disruption peaks, respectively. If the individual response time gains were 
positively correlated with the individual disruption peaks, then this might be a 
preliminary indication that participants response time gain and their disruption 
peaks measure similar constructs. 

Third, we were also interested in exploring whether there are links 
between NAD learning and morphosyntax/morphology. We now used the same 
individual disruption peaks (i.e., random effects of the predictor variable 
DisruptionPeak from the confirmatory disruption peak model) as we had used for 
the link between participants’ response time gain and the size of their disruption 
peak to explore the link between NAD learning and grammar. We assumed that 
participants with relative high disruption peaks would be better statistical learners 
than participants with lower disruption peaks. 

Finally, we explored participants’ response behaviour on the offline 
forced-choice task in a generalized linear mixed-effects model using package 
lme4 (Bates et al., 2015). In this model, the dependent variable was endorsement 
rate. We coded every utterance to which a participant responded positively (i.e., 
with “yes, I’ve heard this utterance before”) as 1 and every utterance to which a 
participant responded negatively (i.e., with “no, I’ve not heard this utterance 
before”) as 0. We fitted endorsement rate as a function of the binary predictor 
variables Generalization (novel, familiar), Rule (rule, violation), Group (DLD, 
typically developing), and ExpVersion (version 1, version 2), and the continuous 
predictor variables Verbal short-term memory and Verbal working memory. We 
included all binary predictors in interaction with each other, and we included the 
continuous predictors in interaction with only the predictors Rule, Generalization, 
and Group (the predictors of interest to our research question). The random-
effects structure of the offline model contained by-subject (N = 72) and by-item 
(X-element: N = 16) random intercepts, by-subject random slopes for the main 
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effect and interaction of Generalization and Rule, and by-item random slopes for 
the main effect and interaction of Group and ExpVersion (Barr et al., 2013, Bates 
et al., 2018). We coded all binary predictors with orthogonal sum-to-zero 
contrasts, and we centered and scaled the continuous predictors (for the specific 
contrast settings, see Appendix A4). We assessed the statistical significance of the 
predictors using 95% Wald confidence intervals. 
 
4.3 Results 
 
4.3.1 Background measures: group comparisons on the cognitive and 
language tasks 
Table 4.4 presents the raw scores and, when available, the standardized norm or 
percentile scores for the cognitive and language tasks (described in Table 4.3) for 
both groups. Between-group t tests (see Table 4.4) showed that the participants 
with DLD performed more poorly than the typically developing participants on 
all cognitive and language tasks except the sustained attention task. 
 
4.3.2 Online measure: descriptive data 
A priori we decided to exclude participants from the analysis if their accuracy on 
the online part of the task was lower than 60% (Lammertink, van Witteloostuijn 
et al., 2019 [Chapter 3 of this dissertation]). Responses were coded as incorrect if 
participants pressed the wrong button colour or if they did not press the button at 
all. None of the participants had to be removed by this criterion, and we had no 
evidence that the participants with DLD made more (or fewer) errors than the 
typically developing participants, pooled over all five blocks and all item types: 
accuracy for the participants with DLD = 91%; accuracy for the typically 
developing participants = 94%, t = −1.59, p = .12, 95% CI of group difference 
[−0.061%, +0.0069%] (see Data Preprocessing script at https://osf.io/8a3yv). 
After removing participants’ incorrect responses, we plotted their response time 
trajectory (see Figure 4.2). We displayed these raw response times only for ease 
of exposition; they do not represent the outcome of our confirmatory hypothesis 
testing. Therefore, (descriptive) differences in these raw response times cannot be 
used to interpret the strength of the effects reported later on. 
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Figure 4.2 Participants’ mean raw response times (RTs) across all five blocks of the 
online exposure phase. DLD (round shape and solid line); TD = typically developing 
(triangle shaped and dashed line). Please note that these raw RTs are only displayed 
for ease of exposition and that they do not represent the outcome of our confirmatory 
hypothesis testing. Therefore, (descriptive) differences in these raw RTs cannot be 
used to interpret the strength of the effects reported later in this paper. 
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4.3.3 Online measure: confirmatory results 
We report only the estimates for the predictors that are relevant for our 
confirmatory hypothesis testing. The full model outcomes are available at 
https://osf.io/8a3yv. As we explained previously, we expected that the model 
estimate for the interaction between the predictor estimating the size of the 
disruption peak and the predictor variable Group would answer our confirmatory 
research question. The estimate was positive, Dz = 0.19, t = 2.23, 95% profile CI 
[0.02, 0.36], p = .03 (see also Table 4.5 and Figure 4.3), which indicated that the 
disruption peak was between 0.02 and 0.36 standard deviations (of pooled 
normalized response times) higher in typically developing children than in 
children with DLD. To obtain an estimate for the range of standardized effect 
sizes that might be reliably detected, we divided the lower and upper bound of the 
confidence interval by the residual standard deviation of the model (residual SD 
= 0.84) and observed that the disruption peak was between 0.02 and 0.43 times 
higher in typically developing children than in children with DLD. Finally, to 
explore the Group × DisruptionPeak interaction, we fitted two additional models 
in which we re-referenced the contrast coding such that we obtained an estimate 
for the size of the disruption peak in participants with DLD and in typically 
developing participants separately. For participants with DLD (with DLD coded 
as 0, and typically developing as +1), the model estimate for the size of the 
disruption peak was positive but nonsignificant, Dz = 0.03, t = 0.42, 95% profile 
CI [−0.10, +0.15], p = .68, and therefore we had no evidence that children with 
DLD were sensitive to the NADs. For typically developing participants (with 
typically developing coded as 0, and DLD as +1), the estimate for disruption peak 
was positive and statistically significant, Dz = 0.21, t = 3.62, 95% profile CI [0.09, 
0.33], p < .001, from which we could conclude that typically developing children 
were sensitive to the NADs. Taking these results together, we concluded that 
typically developing children had a positive disruption peak, whereas this 
disruption peak in children with DLD was lower – if it existed at all – and thus 
we could speak of a NAD learning deficit in children with DLD. 

In addition to providing an estimate for the range of standardized effects 
sizes for the between-group difference that might be reliably detected, we also 
assessed the internal consistency of the online measure (i.e., size of disruption 
peak). To do so, we computed the split-half reliability: Spearman-Brown 
corrected Pearson r correlation between the size of participants’ individual 
disruption peak for even items (random slopes for the predictor DisruptionPeak 
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from the linear mixed-effects model that included data for even items only) and 
the size of participants’ individual disruption peak for odd items (random slopes 
for the predictor disruption peak from the linear mixed-effects model that included 
data for odd items only). The split-half reliability was .79, 95% CI [.66, .87]. 
 

 
Figure 4.3 Interaction between the size of the disruption peak and the predictor 
variable group. RT = response time; TD = typically developing. 
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4.3.4 Online measure: Exploratory results 
From the visualization of participants’ raw response times across the five blocks 
(Figure 4.2), two exploratory questions arose: (a) whether the gain in response 
time from Training Block 1 to Training Block 3 was larger for typically 
developing children than for children with DLD and (b) whether this gain in 
response time was associated with the size of participants’ individual disruption 
peak. To explore the first question, we fitted the exploratory learning speed model 
on participants’ response time data from the first three training blocks. The 
interaction between the predictor estimating the size of the response time gain 
(i.e., second level of the contrast training block) and the predictor variable group 
provided information concerning whether the response time gain differed between 
the two groups of participants. The estimate of this interaction was positive but 
not significant, Dz = 0.21, t = 1.44, 95% profile CI [–0.08, +0.50], p = .15; 
therefore, even if we ignored the statistical problem of the visualization-
drivenness of this test, we had no evidence that the response time gain differed 
between typically developing children and children with DLD. 

To further explore the second question, we computed the Pearson 
correlation coefficient between participants’ individual gain in response time and 
their individual disruption peaks. Because both these individual response time 
measures included data from Training Block 3, the null hypothesis for the Pearson 
correlation coefficient was not 0 but .29, that is, "

2
√3: the correlation between the 

sum-to-zero contrast of the predictor response time gain (+"
#
, 0, −"

#
, 0, 0) and the 

sum-to-zero contrast of the predictor variable DisruptionPeak (0, 0, −"
&
 , +#

&
  , −"

&
; 

see https://osf.io/8a3yv). Thus, we could only conclude that both measures were 
associated if the confidence interval of the correlation did not include .29. This 
was the case because the correlation was positive, r = .67, 95% CI [.52, .78]. Thus, 
we could indeed conclude that, on average, children with larger gains in response 
time from Training Block 1 to Training Block 3 had larger disruption peaks. 
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4.3.5 Further exploration of the link between online statistical learning and 
grammatical proficiency 
For this exploratory analysis, we computed Pearson correlation coefficients 
between participants’ statistical learning performance (individual disruption 
peaks) and their composite grammar performance score (see Figure 4.4 for a 
descriptive visualization of the relationship). We decided to average participants’ 
scores on the sentence recall task and the word structure task because their scores 
on these tasks were positively correlated, r (70) = .73, 95% CI [.65, .82]. Because 
the individual disruption peaks were extracted from the confirmatory disruption 
peak model, the individual measure of statistical learning controlled for all 
predictors that we included in this model (e.g., Group, ExpVersion, Verbal 
working memory, Verbal short-term memory). Thus, because the individual 
measure already controlled for group differences, we estimated the association 
between NAD learning and grammar for the pooled group of participants rather 
than for the two participant groups separately. We observed that the correlation 
between statistical learning and grammar was positive and weak, r = .17, 95% CI 
[–.07, .38]. Thus, we could not conclude that NAD learning, measured through a 
disruption in response times (and controlled, among other variables, for group 
status, verbal working memory, verbal short-term memory), was associated in our 
children with expressive morphosyntax, measured through the sentence recall and 
word structure tasks. 
 
4.3.6 Exploration of the offline measure 
In a first step, we assessed whether participants endorsed items that were in 
accordance with the NADs (rule items) more than they endorsed items that 
violated the NADs (violation items), and referred to this as the Rule effect. The 
model estimated that participants endorsed rule items 1.6 times more often than 
violation items, but this odds ratio (OR) was not significantly different from 1, 
log odds = 0.49, z = 1.56, 95% Wald CI for OR [0.9, 3.0], p = .12 (see Table 4.6 
and Figure 4.5). Therefore, we had no evidence that our offline measure captured 
children’s sensitivity to the NADs.  
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Figure 4.4 Graphic (descriptive) representation of the relationship between 
participants’ individual disruption peaks and their grammar performance. TD = 
typically developing; WS = word structure; SR = sentence recall. Individual 
disruption peaks (random slope in Dz, controlled for Group). 
 
The model estimate for the Rule × Group interaction showed that the rule effect 
was 1.8 times larger in typically developing children than in children with DLD, 
but this OR ratio between both groups was not statistically different from 1, log 
odds = 0.60, z = 1.34, 95% Wald CI for OR ratio [0.8, 4.4], p = .18 (see Table 
4.6). Therefore, we could not conclude that the Rule effect differed between 
children with DLD and typically developing children. 
 One of our criticisms of the use of offline grammaticality judgments has 
been that children often show a yes bias, as we mentioned previously. And indeed, 
our model estimated that participants endorsed items (i.e., said “yes I’ve heard 
this before”) 69% of the time (intercept log odds: 0.79). This is more than one 
would expect on the basis of chance (50%) and 2.2 times more than the rate of 
participants’ rejection of items, so we could conclude that children showed a yes 
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bias on the offline task, z = 4.48, 95% Wald CI probability [61%, 76%], p < .001 
(see Table 4.6). The model also estimated that the yes bias was 0.5 times larger 
(thus 2 times smaller) in typically developing children than in children with DLD, 
z = −2.30, 95% Wald CI for OR [0.3, 0.9], p = .02 (see Table 4.6). 

Finally, the model estimated that children endorsed items with familiar 
X-elements 2.1 times more often than items with novel X items, z = 2.18, 95% 
Wald CI for OR [1.1, 4.1], p = .03 (see Table 4.6). The model also estimated that 
this familiarity effect was 1.8 times larger for typically developing children than 
for children with DLD, but this difference was not statistically different from 1, z 
= 1.04, 95% Wald CI for OR ratio [0.6, 4.9], p = .30 (see Table 4.6). Our task 
instructions might have caused this familiarity effect, however (see Discussion). 

 

  
Figure 4.5 Graphic (descriptive) representation of endorsement rates for item types 
by group. DLD = developmental language disorder; TD = typically developing. Please 
note that we did not obtain these endorsements rates from the statistical model. These 
descriptive data are only displayed for ease of exposition and do not represent the 
outcome of the generalized linear mixed model.  
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4.4 Discussion 
 
4.4.1 A small auditory verbal statistical learning deficit in children with 
developmental language disorder 
The present study provided new evidence for a statistical learning deficit 
concerning children’s sensitivity to NADs for children with DLD compared to 
typically developing children. In an artificial language learning experiment, we 
found that when a long stretch of stimuli with NADs was interrupted by stimuli 
without dependencies, participants with DLD responded to this interruption with 
lower disruption peaks than typically developing participants, or that they had no 
disruption peaks, indicating that children with DLD have an auditory verbal 
statistical learning deficit. However, the confidence interval of the standardized 
effect size for this between-group difference ranged from 0.02 to 0.43. These 
values can be interpreted as a Cohen’s d effect size, so that the lower bound of 
0.02 standard deviations can be called very small and the upper bound of 0.43 
standard deviations as small to medium (Cohen, 1988). 

To see how this result fits within the existing literature on statistical 
learning in children with and without DLD, we have compared the point estimate 
of our effect size for the between-group difference, which was 0.23 (0.19/0.84), 
with the range of effect sizes observed in three recent meta-analyses. The meta-
analyses differed in whether they examined statistical learning in the visuomotor 
domain (Lum et al., 2012), the auditory domain (Lammertink et al., 2017 [Chapter 
2 of this dissertation]), or a combined sample of studies across both domains 
(Obeid et al., 2016). Also, they differed in whether the studies included in the 
analyses assessed learning with an online measure such as disruption in response 
times (Lum et al. 2012), mostly offline measures (Lammertink et al., 2017 
[Chapter 2 of this dissertation]), or a mixture of online and offline measures 
(Obeid et al., 2016). In sum, we observed that (a) our point estimate of 0.23 fell 
within the limits of the confidence interval for (and was thus compatible with) the 
statistical learning deficit – which ranged from 0.072 to 0.584 – reported in Lum 
et al. (across eight studies); (b) our point estimate was smaller than the lower 
bound of the confidence interval reported in Lammertink et al. (0.36 across 10 
studies); and (c) our point estimate was also smaller than the lower bound of the 
confidence interval reported in Obeid et al. (0.276 across 14 studies). From this, 
we speculate that it is rather the method of measuring statistical learning (online 
vs. offline) than the domain in which learning takes place (visuomotor vs. 
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auditory) that impacts the size of the reported deficit. Offline grammaticality 
judgments (as commonly used in the word segmentation and artificial grammar 
studies that were included in the meta-analyses by Lammertink et al., 2017 
[Chapter 2 of this dissertation], and Obeid et al., 2016) apparently lead to a larger 
difference between children with and without DLD than online measures of 
learning. Other than the modality and/or method of measuring statistical learning, 
the type of statistical structure to be learned (e.g., adjacent, nonadjacent, 
hierarchical) may also affect the size of the statistical learning deficit. Given that 
the detection of NADs is thought to be more cognitively demanding than the 
detection of adjacent dependencies (Wilson et al., 2018), the size of the NAD 
learning deficit observed in the present study may be surprisingly small (i.e., this 
would suggest an adjacent dependency learning deficit to be even smaller). We 
speculate, however, that learning the NADs was relatively easy for both groups 
of participants because we optimized the NAD learning conditions in the present 
experiment (see Wilson et al., 2018, for an overview on the constraints of NAD 
learning). That is, (a) we decreased the transitional probability between adjacent 
elements (thereby increasing the saliency of NADs) by using 24 different X-
elements; (b) we made the NAD elements (tep and lut; sot and mip) perceptually 
more similar to each other than to the intervening X-elements; and (c) the NAD 
elements were positioned at the start and end of the sequence making them easier 
to detect (referred to as “edge effects” in Wilson et al., 2018). Because we cannot 
make a direct comparison between the size of the NAD learning deficit (present 
study) and the size of an adjacent dependency learning deficit (estimate not 
available; the meta-analyses cited above contained studies with a mixture of 
dependency types), in future studies researchers may want to use within-subject 
designs to further investigate how the type of statistical structure relates to the size 
of the statistical learning deficit in children with DLD. 
 
4.4.2 Measuring nonadjacent dependency learning in children 
The use of online measures of statistical learning in the auditory domain is 
relatively new. Therefore, new measures keep emerging. For example, in a 
recently published paper Kuppuraj et al. (2018) showed that adults’ sensitivity to 
sequences, including NADs, in the auditory domain can also be assessed through 
a difference in slopes at the transition point between sequenced and nonsequenced 
items. A slope difference may be expected if participants exhibit statistical 
learning (large negative slope) during the pre-disruption blocks, and participants 
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do not exhibit it (or perhaps slightly negative slope) during the disruption block. 
By contrast, a difference in disruption peak height (as used in the present study) 
may be expected if participants are better at predicting regularities during 
sequenced blocks than during the disruption block. Both effects are likely to play 
a role, and our exploratory results suggest that the effects are associated, but their 
relative strengths determine which of the two will be easier to detect in an 
experiment. Determining under what circumstances which method of measuring 
fits best with the existing literature on the online measurement of statistical 
learning (e.g., via Monte Carlo simulations) is beyond the scope of the present 
article but may be relevant for future work. 

Given that our online measure of NAD learning was relatively new, it 
may be good to address the reliability and validity of the measure. We derived 
indications of the reliability from different sources. First, the widths of the 
reported confidence interval around the standardized effect size for our 
confirmatory measure ranged from small to medium, indicating moderate 
reliability (the smaller the width, the more reliable a measure is). Second, by using 
a linear mixed-effects model with a random intercept for X-element and with 
random slopes for X-element, we could conclude that the reported effects 
generalize to the population of all possible X-elements and thus that the size of 
the disruption peak was not specific to the X-elements in the artificial language 
used in the present study. Finally, the online NAD measure (disruption peak) had 
a split-half reliability (Spearman-Brown corrected) of .79, with a 95% confidence 
interval ranging from .66 to .87 (see our R markdown script at https://osf.io/8a3yv 
for computation of the split-half reliability). As to the validity of our results, the 
present study combined two measures that are commonly used to measure the 
construct of statistical learning. First, disruption peaks have been shown to be a 
valid measure of people’s sensitivity to statistical regularities in serial reaction 
time studies (e.g., Conway, Arciuli, Lum, & Ullman, 2019; Lum et al., 2012). 
Second, NAD learning studies have shown that infants and adults learn structure 
from exposure to miniature artificial languages comparable to the language used 
in the present study (Gómez, 2002). Finally, Lammertink, van Witteloostuijn et 
al. (2019 [Chapter 3 of this dissertation]) showed that the combination of the 
measures from the design as used in the present study led to a valid measure of 
NAD learning in primary-school-aged children. 
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4.4.3 Alternative explanations 
Rather than a statistical learning deficit, an alternative explanation for the 
difference observed between children with and without DLD in auditory statistical 
learning studies may be that limitations in verbal short-term memory, verbal 
working memory, or processing speed in children with DLD hinder their detection 
of NADs. However, our statistical analysis detected a difference between children 
with and without DLD even when we controlled for verbal short-term memory 
and for verbal working memory. Therefore, we argue that reduced memory 
capacity is not the limiting factor in children’s detection of NADs. Furthermore, 
visual inspection of the participating children’s raw response times (in 
milliseconds) to the target and nontarget items in the first training block (Figure 
4.2) may suggest that participants with DLD and typically developing participants 
responded equally fast in this first block. If participants with DLD had required 
more time for processing the auditory stimuli, then one would have already 
expected to observe slower response times in this first training block. Thus, from 
this observation, we also speculate that differences in processing time are not the 
limiting factor in children’s detection of NADs. Finally, we found no evidence 
that participants with DLD made more errors during the online phase of the 
experiment, which means that we have no indirect evidence that children with 
DLD had more difficulties with the task. 

Because we found that NAD learning differed based on general language 
proficiency at the group level (DLD vs. typically developing), we further explored 
if sensitivity to NADs was correlated with participants’ knowledge of 
morphological and morphosyntactic rules at the individual level. We found no 
evidence for (or against) such a relationship. Of course, the sentence recall task 
and the word structure task with which we assessed participants’ morphosyntactic 
and morphological knowledge are not pure measures of children’s sensitivity to 
NADs in natural language. For example, there is some debate about whether the 
sentence recall task taps solely into morphosyntactic ability or whether task results 
also depend on other cognitive processes such as working memory (Frizelle, 
O’Neill, & Bishop, 2017). As for the word structure task, this task assesses 
children’s knowledge of relatively simple items that are highly frequent in Dutch 
(the task has been developed for children between 5 and 8 years of age). 
Therefore, it could well be the case that children retrieve the correct forms of the 
items from their declarative memory instead of using morphological rules. This 
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may mean that the word structure task is more sensitive to rote learning strategies 
rather than to statistical or rule learning strategies. 

The number of participants tested is typically small in clinical studies. 
Consequently, the power of clinical studies may be too low to detect the effects 
under examination. However, we have two reasons to believe that the present 
study was sufficiently powered to detect the effects under examination. First, in 
comparison to serial reaction time task studies, the number of participants with 
DLD whom we tested for the present study was relatively large. In the serial 
reaction time task studies (approximately 11 studies in total), the number of 
participants with DLD has ranged from 14 to 48, with only two studies reporting 
more than 36 participants (Conti-Ramsden, Ullman, & Lum, 2015; Hsu & Bishop, 
2014a). Second, we did detect an effect in our online measure. This indicates that 
we tested a sufficient number of participants to detect a difference in NAD 
learning between participants with and without DLD. Also, the confidence 
interval for this effect had a small range. In underpowered studies, this range 
would be large. 

A limitation of the present study is that our offline forced-choice task 
measure could not detect NAD learning. Instead of asking participants whether 
they thought the utterance with which we presented them followed the rules of the 
language, we asked them whether they had heard the utterance before. This 
formulation may have changed the nature of the offline task, making it a 
recognition task rather than a grammaticality judgment task. As such, it may be 
no surprise that participants showed a familiarity preference (i.e., they were more 
likely to respond yes to items with familiar X-elements than items with novel X-
elements). Given this limitation, we deem it impossible to draw any conclusions 
from our offline measure of learning. 
 
4.5 Conclusion 
 
We would like to end our discussion with some words about why the study of 
NAD learning in children with DLD is relevant for professionals and researchers 
working with these children. Our discussion of these clinical implications is, of 
course, speculative. Before any firm conclusions can be drawn about the clinical 
relevance of the potentially small NAD learning deficit in children with DLD, 
future studies may first want to further develop the measure of NAD learning. 
Nevertheless, if the small magnitude of the auditory NAD learning deficit in DLD 
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is replicated, then one may argue that it may be more effective to focus on the 
improvement of other skills important for children’s language development (e.g., 
phonological processing, phonological working memory) rather than to focus on 
the development of therapies that aim to improve children’s statistical learning 
ability. For example, a meta-analysis by Graf Estes, Evans, and Else-Quest (2007) 
showed that children with DLD performed on average 1.27 standard deviations 
(95% CI [1.15, 1.39]) below their typically developing peers on a nonword 
repetition task. This effect size was larger than the effect size observed in the 
present study and also larger than the effect sizes reported by Lammertink et al. 
(2017 [Chapter 2 of this dissertation]), Lum et al. (2014), and Obeid et al. (2016) 
in their meta-analyses of statistical learning in children with DLD. Thus, the gains 
in children’s language ability may be higher for therapies that focus on children’s 
phonological skills than for therapies that focus on their detection of statistical 
regularities. 

Alternatively, because the auditory verbal statistical learning deficit in 
children with DLD is small, the deficit could potentially be easily resolved if ways 
are found to facilitate the detection of NADs in children with DLD at an early age. 
Recently, Plante and Gómez (2018) made a similar argument and provided 
concrete examples for incorporating the principles of statistical learning in already 
existing language interventions for children with DLD. For example, it has been 
suggested that variability in the nontarget structure (i.e., the X-elements in NAD 
pairs) facilitates the detection of regularities in the input (Gómez, 2002; Plante et 
al., 2014). Such findings are encouraging, but also assume (and require) that 
children with DLD apply a statistical rather than a rote learning strategy in a 
natural (rather than artificial) language learning context. Hsu and Bishop (2014b), 
for example, concluded that using a statistical learning strategy may be 
problematic for children. They observed that, in a natural language context, 
children tend to rely more on a rote learning strategy. Therefore, the first step may 
be to investigate how educators can encourage children with DLD to rely on 
statistical cues in their native language input before they incorporate the principles 
of statistical learning into the existing language interventions. In conclusion, 
although the present study provided new evidence for a statistical learning deficit 
specific to NADs in children with DLD compared to the statistical learning in 
typically developing children, we acknowledge that this deficit is probably small 
in size. 
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Chapter 5 
Visual statistical learning in children with and without 
DLD and its relation to literacy in children with DLD 
 
This chapter is a slightly modified version of the paper that was accepted for 
publication as: 
 
Lammertink, I., Boersma, P., Rispens, J., & Wijnen, F. (2020). Visual statistical 
learning in children with and without DLD and its relation to literacy in children 
with DLD. Reading and Writing: An Interdisciplinary Journal. Advance online 
publication. 
 
Data and scripts for analyses: https://osf.io/8gpjt/ 
 
Abstract 
Visual statistical learning (VSL) has been proposed to underlie literacy 
development in typically developing children. A deficit in VSL may thus 
contribute to the observed problems with written language in children with 
dyslexia. Interestingly, although many children with developmental language 
disorder (DLD) exhibit problems with written language similar to those seen in 
children with dyslexia, few studies investigated the presence of a VSL deficit in 
DLD, and we know very little about the relation between VSL and literacy in this 
group of children. After testing 36 primary-school-aged children (ages 7;8 – 10;4) 
with DLD and their typically developing peers on a self-paced VSL task, two 
reading tasks and a spelling task, we find no evidence for or against a VSL deficit 
in DLD, nor for associations between VSL and literacy in DLD. We discuss the 
implications for our understanding of language (and literacy) difficulties in 
children with DLD.  
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5.1 Introduction 
 
Language therapists, clinical linguists and scientists who work with children with 
developmental language disorder (DLD) have long been interested in 
understanding the cognitive mechanisms underlying the language problems seen 
in these children. By definition, children with DLD have deficits in language that 
cannot be attributed to neurological damage, hearing impairment, intellectual 
disability, or unfavourable psychosocial/educational conditions. The difficulties 
with language manifest themselves across multiple areas such as the lexicon, 
morphology, (morpho)syntax, discourse (Leonard, 2014), reading (McArthur, 
Hogben, Edwards, Heath, & Mengler, 2000) and spelling (Joye, Broc, Olive, & 
Dockrell, 2019). Also, they frequently co-occur with difficulties in other cognitive 
domains such as attention, working memory (e.g., Ebert & Kohnert, 2011, 
Montgomery, Evans, & Gilliam, 2018) and motor skills (Hill, 2001). This wide 
range of observed difficulties makes it difficult to point to a core underlying 
(cognitive) deficit for the disorder and thus far the observed language problems 
in children with DLD have been explained from language-specific deficits (see 
Leonard, 2014, chapter 9 for an overview) as well as from deficits in more general 
learning or processing mechanisms that contribute to language development (e.g., 
auditory perception deficits: Tallal, Stark, & Mellits, 1985; slower processing (of 
spoken language): Miller, Kail, Leonard, & Tomblin, 2001; limited short-term 
memory and working memory capacities: Archibald, & Gathercole, 2006; 
Montgomery et al., 2018). In the present paper, we seek evidence for one of these 
more general accounts, namely that the problems observed in children with DLD 
stem from a general cognitive statistical learning deficit (Evans, Saffran & Robe-
Torres, 2009; Hsu and Bishop, 2014a; Lammertink, Boersma, Wijnen & Rispens, 
2017 [Chapter 2 of this dissertation], Obeid, Brooks, Powers, Gillespie-Lynch & 
Lum 2016; Wijnen, 2013). Before we turn into explaining why the study of visual 
statistical learning in DLD is interesting, we first outline how sensitivity to 
structural regularities in the input (i.e., statistical learning) may play a role in 
children’s language development. 
 
5.1.1 Language learning through statistics 
Natural languages reflect structural regularities at the sound, word and sentence 
level. The ability to detect and learn these regularities may be crucial for language 
development as it has been proposed to underlie word segmentation (Saffran & 
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Graf Estes, 2006) and the construction of linguistic categories and dependencies 
(e.g., Mintz, 2003; Wijnen, 2013). Indeed, there seems to be a predictive relation 
between detecting and learning regularities from verbal input (statistical learning) 
and different aspects of language (e.g., vocabulary knowledge: e.g., Spencer, 
Kaschak, Jones, & Lonigan, 2015; Shafto, Conway, Field, & Houston, 2013; 
morphology/grammar: Hamrick, Lum, & Ulman, 2018 and syntactic processing: 
Kidd, 2012; Kidd & Arciuli, 2016; Wilson et al., 2018). Another source of 
evidence for a link between statistical learning and language ability comes from 
studies in people with DLD: these studies have shown that people with DLD are 
less sensitive to statistical regularities in auditorily presented verbal stimuli than 
people without DLD (meta-analyses: Lammertink et al., 2017 [Chapter 2 of this 
dissertation], Obeid et al., 2016). In these studies participants typically listen to a 
continuous stream of auditorily presented nonsense syllables, either presented in 
a continuous manner (e.g., bupadadutaba; Saffran, Newport, Aslin, Tunick, & 
Barrueco, 1997) or with short pauses in between (e.g. tep wadim lut; Gómez, 
2002). Unbeknowst to the participants the nonsense syllables form words (the 
example above consists of two words: bupada and dutaba) or their order of 
appearance in the utterance is governed by rules (in the second example above, 
tep and lut always co-occur). These words and rules can be learned if participants 
are sensitive to the transitional probabilities or nonadjacent dependencies that 
underlie them. When people with and without DLD are tested on their knowledge 
of these words and rules, it has been shown that people without DLD outperform 
people with DLD. Hence, people with DLD show an auditory verbal statistical 
learning deficit as compared to people without DLD (see also Chapter 4 of this 
dissertation). 
 
5.1.2 Statistical learning outside the language domain 
Structure is not unique to language, however (e.g., “like language, music can be 
viewed as a system of structure regularities”; Leonard, 2014, p. 213), and 
therefore it has been hypothesised that humans may have a domain-general 
statistical learning mechanism. The hypothesis that a domain-general statistical 
learning mechanism, rather than a domain-specific learning mechanism (i.e., 
sensitivity to statistical patterns solely in the verbal input), is important for 
successful language acquisition, leads to two predictions. First, one would expect 
to observe correlations between people’s ability to detect statistical regularities in 
other domains than language and their performance on language tasks. Second, 
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the hypothesis also predicts that the statistical learning deficit observed in children 
with DLD is domain-general and should thus also be present outside the auditory 
verbal domain. As for the first prediction, there is evidence that in typically 
developing children and in children with dyslexia, statistical learning of 
regularities between nonverbal elements in the visual domain (e.g., unfamiliar 
cartoonlike characters, meaningless shapes or symbols) and visuomotor domain 
(e.g., a sequence of computer screen locations in which a cartoon or shape 
appears) correlates with reading performance (Arciuli & Simpson, 2012; 
Hedenius et al., 2013; Steacy et al., 2019; Vakil, Lowe, & Goldfus, 2015; van der 
Kleij, Groen, Segers, & Verhoeven, 2018; von Koss Torkildsen, Arciuli, & Wie, 
2019) and grammatical proficiency (meta-analysis by Hamrick et al., 2018). As 
for the second prediction, there is also evidence that children with DLD perform 
worse on statistical learning tasks with nonverbal stimuli in the visuomotor 
domain that typically developing children (Lum, Conti-Ramsden, Morgan, & 
Ullman, 2014). Such a visuomotoric nonverbal statistical learning deficit has also 
been observed in children with dyslexia (Lum, Ullman, & Conti-Ramsden, 2013), 
but see recent studies reporting no evidence for or against such a deficit in 
dyslexia: Henderson, & Warmington (2017); van der Kleij et al. (2018); Schmalz, 
Altoè, & Mulatti (2017). Children with dyslexia also perform more poorly in their 
detection of nonverbal regularities (geometrical shapes or unfamiliar symbols) in 
the visual domain, hence they show a visual statistical learning (VSL) deficit 
(Pavlidou & Williams, 2014; Sigurdardottir et al., 2017). In this light, it should 
also be noted, however, that two different research groups concluded that the 
magnitude of the VSL deficit in dyslexia may be inflated as a result of publication 
bias (Schmalz et al., 2017; van Witteloostuijn, Boersma, Wijnen, & Rispens, 
2017). 
 
5.1.3 A visual nonverbal statistical learning deficit in DLD 
Interestingly, while there are some studies on VSL in children with dyslexia, 
studies on VSL in children with DLD are scarce. To the best of our knowledge 
only one study has thus far used a nonverbal VSL task to compare children with 
and without DLD (Noonan, 2018). Noonan found no evidence for or against a 
difference in VSL performance between children with and without DLD, but note 
that neither of the groups in her study showed evidence of learning or not learning 
the nonverbal regularities. Thus, it is still unknown whether the difficulties with 
language (and literacy) in children with DLD relate to a VSL deficit.  



Visual nonverbal statistical learning in children with DLD     117 
 

 
 
 
 
 
 
 

Investigating visual nonverbal statistical learning abilities in children 
with DLD is important for several reasons. Firstly, in the statistical learning 
literature on typical learners it has recently been claimed that – as opposed to 
being fully domain-general – the statistical learning mechanism is in part domain- 
or stimulus dependent (Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018). 
More specifically, Siegelman et al. observed a dissociation between people’s 
statistical learning of verbal materials versus their learning of nonverbal materials. 
From this, Siegelman et al. claim that differences in prior knowledge of statistical 
structure may impact on performance in verbal statistical learning tasks 
differently from performance in nonverbal statistical learning tasks. They argue 
that the “tabula rasa” assumption (i.e., that learners have no expectations or prior 
knowledge regarding the underlying statistical structure) holds for nonverbal 
tasks but not for verbal tasks. With verbal materials, participants may always have 
expectations of the underlying structure based on their native language experience 
(Siegelman et al. refer to this as “linguistic entrenchment”). If this claim is true, 
this may mean that children with DLD are worse in detecting statistical 
regularities in verbal materials than their typically developing peers, not because 
they are less sensitive to the statistical regularities, but because they have less 
expectations of the underlying structure due to their language deficit. Only if the 
children with DLD also show a deficit in their detection of regularities in a 
nonverbal statistical learning task, one could conclude that reduced sensitivity to 
domain-general structural regularities contributes to the observed language 
problems in this group of children.  
 Secondly, on the basis of studies with typically developing children and 
those with children with dyslexia, it has been claimed that visual and visuomotoric 
statistical learning of nonverbal materials relates to literacy skills. While children 
learn to read and write, they need to detect which graphemes correspond to which 
phonemes and vice versa. In many orthographies, graphemes may correspond to 
multiple phonemes. Which phoneme should be used is then dependent on the 
context in which it appears. For example, in English, the grapheme ‘c’ may 
correspond to either /k/ as in can’t or to /s/ as in cent. The statistical regularity to 
be learned is that the vowel that follows the ‘c’ determines its phoneme. When ‘c’ 
is followed by ‘a’, ’o’ or ‘u’ it is usually pronounced as /k/; when it is followed 
by ‘e’, ‘i’ or ‘y’ it is usually pronounced as /s/. Children may use a statistical 
learning mechanism to detect these (context dependent) regularities in grapheme–
phoneme correspondences (Arciuli, 2017, 2018; Treiman, 2018). Interestingly, 
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children with DLD exhibit large individual differences in literacy performance; 
approximately half of the children with DLD have problems with reading and/or 
spelling (McArthur et al., 2000). In the present study, we will explore whether 
these large individual differences in literacy performance among children with 
DLD can be explained by individual differences in visual statistical learning – as 
has also been claimed for typically developing children and children with 
dyslexia.  
 Thirdly, a methodological reason for conducting the present study is that 
the evidence for a domain-general nonverbal statistical learning deficit comes 
mostly from studies using the serial reaction time task (Nissen & Bullemer, 1987). 
Although the serial reaction time task is widely used as a measure of people’s 
visuomotoric nonverbal statistical learning ability, the validity of the task has been 
questioned (West, Vadillo, Shanks, & Hulme, 2017). Also, children with DLD 
often have subtle motor deficits (Hill, 2001) that may impact on their performance 
on this visuomotoric task. In the present study, we therefore use a nonverbal 
statistical learning task in the visual (rather than visuomotoric) domain to 
investigate the domain-generality of the statistical learning deficit in DLD. The 
reliability of the VSL task has been questioned as well, but recent modifications 
to the setup of the task are promising and seem to detect learning – in both adults 
(Siegelman, Bogaerts, & Frost, 2017; Siegelman, Bogaerts, Kronenfeld, & Frost, 
2018) and children (van Witteloostijn, Lammertink, Boersma, Wijnen, & Rispens, 
2019).  

Fourthly, the present study follows one of the research directions put 
forward in Arciuli and Conway (2018). In this review paper, Arciuli and Conway 
conclude that it is important to further investigate under what conditions children 
with developmental disabilities can and cannot learn statistical regularities. As 
outcomes of studies like the present study may identify relative strengths and 
weaknesses of these children, they may be helpful in developing intervention 
studies that aim to support language learning in children with language 
difficulties. 
 
5.1.4 The visual statistical learning paradigm  
In the present study, we use a triplet learning paradigm to investigate children’s 
sensitivity to statistical regularities in the visual nonverbal domain. In this 
paradigm, participants are visually exposed to a sequence of individual nonverbal 
elements (unique cartoon drawings or meaningless shapes) that appear one by one 
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on a computer screen. Unbeknownst to the participants, the individual elements 
are distributed into fixed groups of three (triplets). Within these triplets, the 
transitional probability (TP) between elements is 1.0, but across triplets the TP is 
lower. After exposure to a series of elements, participants’ knowledge of the 
triplets is assessed with an offline recognition test. Several research groups raised 
concerns on the use of a recognition task as the only measure of statistical learning 
performance (Karuza, Farmer, Fine, Smith, & Jaeger, 2014; Siegelman, Bogaerts 
and Frost, 2017; Siegelman, Bogaerts, Kronenfeld, et al. 2018). In response to 
these concerns, these groups made the exposure phase self-paced (Karuza et al., 
2014; Siegelman, Bogaerts, Kronenfeld et al. 2018) or turned this phase into a 
target detection task (Qi, Sanchez, Georgan, Gabrieli, & Arciuli, 2019) such that 
response times (RTs) can serve as an additional, and online, index of VSL. In the 
self-paced familiarization phase designs, learners show a predictability advantage 
such that their RTs to predictable elements (e.g., the second element and third 
element of the triplets) are faster than their RTs to less predictable elements (e.g., 
the first element of a triplet). Siegelman, Bogaerts, Kronenfeld et al., detected 
such predictability advantage using a self-paced VSL in adults. Van 
Witteloostuijn, Lammertink, Boersma, Wijnen and Rispens (2019) detected it 
using a self-paced VSL task in children aged between five and eight years old. In 
the target detection task, learning of the triplets is observed as learners (both 
children and adults) become faster at detecting the target (which is always the 
third element of a triplet, and thus predictable if one is sensitive to the triplet 
structure) over time (see Qi et al., 2019). Finally, Siegelman, Bogaerts and Frost 
(2017) also gave recommendations on how to expand the offline test phase with 
different types of test items. Van Witteloostuijn, Lammertink et al. (2019) 
implemented both the recommended online measure and offline measure in a 
child-friendly version of the task, and we use their task in the present study.  
 
5.1.5 The present study 
The aim of the present study is thus to investigate whether children with DLD 
have a domain-general statistical learning deficit. In doing so, we compare VSL 
performance between children with DLD and their typically developing peers, 
using a self-paced online measure of learning (Siegelman, Bogaerts, Kronenfeld 
et al., 2018; van Witteloostuijn, Lammertink et al., 2019) and two offline 
measures of learning (Siegelman, Bogaerts, & Frost, 2017). Our first research 
question is whether children with DLD have a nonverbal VSL deficit. We expect 



120   Chapter 5 
 

to observe such a deficit, since we hypothesize that a domain-general statistical 
learning deficit underlies the language problems in these children. Our second 
research question concerns the putative association between VSL and literacy in 
DLD. As van der Kleij et al. (2018) report that growth in pseudoword reading, but 
not word reading, is associated with serial reaction time performance in children 
with dyslexia, we will explore the correlations between VSL and reading words 
and reading pseudowords separately. 
 
5.2 Method 
 
5.2.1 Participants 
The present study is part of a larger research project on the relation between 
statistical learning, grammar and literacy acquisition in children (see Procedure), 
and consequently our sample of participants overlaps with those reported on in 
other studies with different research questions (Lammertink, Boersma, Wijnen, & 
Rispens, 2019, under review [Chapter 4 and Chapter 6 of this dissertation 
respectively); van Witteloostuijn, Boersma, Wijnen, & Rispens, 2019a, 2019b, 
submitted).  
 The two groups of children that participated in the present study – 
children with DLD and typically developing children – are matched on gender, 
age (maximal difference of three months), nonverbal intelligence and 
socioeconomic status (SES). A combined score that takes the average education 
level, average income and average working status of the people living in a 
particular district (defined per zip code) is used as a proxy for SES (Sociaal 
Cultureel Planbureau, 2016). The score has been designed to have a Dutch 
average of 0 and higher scores indicate higher SES. SES estimates for the children 
with DLD are based on either their home address (N = 22) or school address (N = 
14). SES estimates for the typically developing children are based on their school 
address (four different schools across the Netherlands). Ethical approval for this 
study was obtained from the ethical review committee of the University of 
Amsterdam, Faculty of Humanities. For the children with DLD, informed consent 
was given by the children’s parents or caregivers prior to participating in the 
study. Typically developing children were enrolled on an opt-out basis. 

Children with DLD. As also described in Lammertink, Boersma, Wijnen 
and Rispens (2019 [Chapter 4 of this dissertation]) and Lammertink, Boersma, 
Wijnen and Rispens (under review [Chapter 6 of this dissertation]), 37 children 
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with DLD, aged seven to eleven years old, took part in the study. The children 
with DLD were recruited via four national organizations in the Netherlands, via 
an association for parents with children with DLD and self-employed speech 
therapists. Children had to be diagnosed with DLD by a licensed clinician, taking 
the following criteria into account: (1) a proficiency score 1.5 SD below the norm 
on two out of four subscales (speech production, auditory processing, 
grammatical knowledge, lexical semantic knowledge) of a standardized language 
assessment test battery, (2) they had at least one parent who is a native speaker of 
Dutch and (3) they had not been diagnosed with Autism Spectrum Disorder, 
Attention Deficit Hyperactivity Disorder (ADHD), or other (neuro)psychological 
problems. In addition to these criteria, children had to obtain a percentile score of 
at least 17% on the Raven Progressive Matrices (RCPM; Raven, Raven, & Court 
2003) – a standardized measure of nonverbal intelligence that was administered 
as part of our own test battery. After testing, we had to exclude one child with 
DLD as it turned out that this child had hearing problems in addition to the 
diagnosis of DLD. This left us with a sample of 36 children with DLD (8 female, 
28 male, Mage = 9;1. Age range = 7;8 – 10;4). At the start of the project, we 
contacted different professionals working with children with DLD in the 
Netherlands (see above). We informed all the professionals who were involved in 
the recruitment process that recruitment and testing had to take place within a 
predetermined testing period that ran from January 2017 to March 2018. We 
tested as many children as possible in this period. The widths of the confidence 
intervals for our confirmatory and exploratory research questions will tell us 
whether the power of the experiment was sufficient to detect a medium-sized 
effect size. As the number of participants per group (N = 36) is relatively large for 
this type of study (see Discussion), we expect that this should not be a problem. 

Typically developing children. Fifty-nine typically developing children, 
aged seven to eleven years, also took part in the study. The typically developing 
children were recruited via four different primary schools across the Netherlands. 
Five of the 59 typically developing children that participated were excluded 
because their nonverbal intelligence score was lower than 17% and/or because 
they scored below the normal range (norm score < 8; percentile score < 17) on at 
least two of the following language tasks: one-minute word reading  test (Brus & 
Voeten, 1979), two-minute nonce-word reading test (Klepel; van den Bos, 
Spelberg, Scheepstra, & de Vries, 1994), spelling (Schoolvaardigheidstoets 
spelling; Braams & de Vos, 2015) or sentence recall (CELF-4-NL; Semel, Wiig, 
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& Secord, 2010). Additionally, one typically developing child was excluded, 
because this child reported having been diagnosed with ADHD. From the 
remaining 53 children, we selected 36 children (9 female, 27 male, Mage = 9;1. 
Age range = 7;8 – 10;4) that matched best with our DLD sample, taking age, 
gender, SES and nonverbal intelligence into account. For a summary of the group 
characteristics, see Table 5.1. 
 
5.2.2 Visual statistical learning task 
The VSL task used in the present study is also described in van Witteloostijn, 
Lammertink et. al., 2019 and modelled after previous studies (Arciuli & Simpson, 
2012; Siegelman, Bogaerts, & Frost, 2017; Siegelman, Bogaerts, Kronenfeld et 
al., 2018). The present VSL task differs from the one described by van 
Witteloostuijn, Lammertink et al., 2019 on four points: (1) we made the task 
instructions more explicit (see appendix A5.1); (2) There were two sets of alien 
triplets, instead of one; (3) All children performed a cover task, and this cover 
task is different from the one described in van Witteloostuijn, Lammertink et al., 
2019; (4) In the offline test phase, the order of tasks was reversed: the triplet 
completion task was first, the triplet recognition task second. 

Online familiarization phase. At the start of the experiment, we told 
children that they were going to play a game in which they would send aliens off 
to a spaceship (appendix A5.1). The aliens appeared on the screen, one-by-one, 
and were sent into the spaceship by pressing the space bar. Every time the child 
pressed the space bar, the current alien disappeared and the next alien appeared. 
Each alien was part of a triplet of three aliens that always occurred in the same 
order (thus in the triplet ABC, B always followed A and C always followed B). 
There were four such triplets (ABC, DEF, GHI, JKL, see appendix A5.2). 
Children were not informed about these triplets, but they were told that some of 
the aliens really liked each other and therefore stood together in line. Children 
were asked to watch each alien closely and to try and figure out which aliens 
belonged together. Each triplet occurred 24 times in the familiarization phase, 
divided over four blocks of six repetitions of each triplet. Between every two 
successive blocks, there was a small break in which children were awarded a 
sticker. The predictability of appearance of individual aliens was dependent on 
the position of the alien within the triplet: the appearance of the second and third 
aliens is fully predictable from the appearance of the preceding alien(s) (TP = 
1.0). The transitional probability when crossing a triplet boundary, thus going 
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from the third alien to the first element of another triplet is lower (each first alien 
can be preceded by the third alien from either of the two other triplets), making 
the appearance of each first alien less predictable (Figure 5.1, Figure adapted from 
van Witteloostuijn, Lammertink et al., 2019, p.5). There were two constraints on 
the order of appearance of the triplets: (1) the same triplet never appeared twice 
in a row (e.g., ABC, ABC), and (2) repetitions of pairs of triplets (e.g., ABC, JKL, 
ABC, JKL) were ruled out.  

There were two experiment versions that differed with respect to which 
set of individual aliens comprised a triplet (Appendix A5.2). In each experiment 
version, there were two randomized orders. We decided to work with two 
experiment versions and two randomized orders to control for any potential 
effects of single stimuli, triplets or order of appearance. Finally, the 
familiarization phase had a cover task: children were instructed that occasionally 
the exact same alien appeared twice in a row. If this happened, the child had to 
touch the repeated alien with his/her finger on the screen. In each block, such a 
repetition occurred three times (e.g., AABC, DEEF and GHII) and we ensured that 
every individual alien was repeated once over the complete course of the 
familiarization phase. 
 Offline test phase. The offline test phase consisted of 40 trials (16 triplet 
completion trials and 24 triplet recognition trials) to test children’s knowledge of 
the triplets that they were familiarized with (the “base triplets”). The base triplets 
were contrasted with “foil triplets”: four triplets that were created from the same 
set of twelve aliens, but had never appeared as a triplet during the familiarization 
phase. We tested children’s knowledge of complete base triplets (e.g., ABC; triplet 
completion: N = 8; triplet recognition: N = 8) as well as their knowledge of “base 
pairs” from within the base triplets (e.g., AB, BC; triplet completion: N = 8; triplet 
recognition: N = 16; Figure 5.2; Appendix A5.3). In the triplet completion trials, 
children either completed the missing alien in a base triplet or base pair. The 
correct answer was always one out of three aliens (three-alternative forced choice 
task). In the triplet recognition items children were presented with either two 
complete triplets (the base triplet and one foil triplet: e.g., ABC versus DHL) or 
two pairs (a base pair and a foil pair: e.g., AB versus DH) and we asked the 
children to pick the triplet or pair that appeared most familiar to them (two-
alternative forced choice). In both the triplet completion and triplet recognition 
trials, we controlled for the position of the correct alien on the screen and for the 
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frequency of foil triplets, pairs and single aliens to avoid continued learning 
during the triplet recognition trials (Arciuli & Simpson, 2012).  
 

 
 
 
 
 
 
 
 
 

Figure 5.1 The transitional probability (TP) structure in the visual statistical learning 
task. Note that we adopted this Figure from van Witteloostuijn, Lammertink et al., 
(2019), p.5 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 (A) Two examples (left: one base triplet; right: one base pair) from the 
triplet completion trials. Children are asked to replace the question mark with one of 
the three aliens at the bottom. (B) Two examples (upper row: one base triplet; bottom 
row: one base pair) from the triplet recognition trials. Children are asked to pick the 
group of aliens that looks most familiar to them. 
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5.2.3 Literacy Tasks 
 Word reading test. In this task children had one minute to read aloud as 
many (existing) Dutch words as they could (EMT; Brus, & Voeten, 1979). The 
raw score was the total number of words read, with a maximum of 116 words. 
Age-appropriate norm scores were derived from the raw scores. A norm score of 
10 corresponds to a percentile score of 50. Norm scores below 8 are interpreted 
as below average whereas norm scores above 12 are interpreted as above average. 
 Nonce word reading test: Similarly, as in the word reading task, children 
were asked to read nonce words aloud. This time, however, they had two minutes 
to read as many nonce words as they could (Klepel; van den Bos et al., 1994). 
Again, the maximum number of words to read was 116, and norm scores were 
derived from the raw scores. 
 Spelling. In the spelling task (Schoolvaardigheidstoets spelling; Braams 
& de Vos, 2015), the experimenter read aloud a sentence to the child and then 
instructed the child to write down one word from this sentence. There were 30 
items. For each correct written form, children received one point. Age-appropriate 
percentile scores were derived from the raw scores. Percentile scores below 17 
are interpreted as below average whereas scores above 85 are interpreted as above 
average. 
 
5.2.4 Other cognitive measures 
We also took a measure of children’s visual spatial short-term memory, their 
visual spatial working memory and their sustained attention (Table 5.2). 
 
5.2.5 Procedure 
As described earlier, the present study is part of a larger research project. The total 
task battery contained more tasks than reported here. All children that participated 
in the present study completed the full task battery, and this took two to four 
sessions (each lasting approximately one hour) per child. The results on the other 
tasks of our battery, but with the same group children, are reported in Lammertink 
et al. (2019, [Chapter 4 of this dissertation]) and Lammertink et al. (under review, 
[Chapter 6 of this dissertation]). Furthermore, a number of the typically 
developing participants from the same group of 59 typically developing children 
are also reported on in studies by van Witteloostuijn, Boersma et al. (2019a, 
2019b) and van Witteloostuijn et al. (submitted). In her studies, van Witteloostuijn 
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and colleagues uses the performance of the typically developing children to 
evaluate statistical learning in children with dyslexia. 
 

Table 5.2 Description of the other cognitive measures 
Task Description Possible 

range 
(raw scores) 

Raven’s Progressive 
Matrices (Raven et al., 
2003) 
 

Nonverbal intelligence 
Children are asked to complete a 
visual pattern by selecting the 
correct missing pattern from 
six or eight possible options. 
 

 
1–60 

Dot Matrix Forward 
(AMWA; Alloway, 
2012) 
 

Visuospatial short-term memory 
Children are presented with a four-
by-four matrix in which sequences 
with dots appeared. Children are 
asked to point out the position of 
the dots in the exact same order as 
presented. The experiment consists 
of six blocks with each block 
consisting of maximally six trials. 
The experiment terminated once a 
child repeated three or less 
sequences correct.  

0–36 

 
Dot Matrix Backward 
(AMWA; Alloway, 
2012) 
 

 
Visuospatial working memory 
The task is very similar to the Dot 
Matrix Backward, with the only 
difference that children had to point 
out the position of the dots in 
reversed order. 
 

0–36 

Tel Mee! From the Test 
of Everyday Attention 
for Children (Manly et 
al., 2010) 
 

Sustained attention 
Children are asked to count sounds. 
Each trial has a different number of 
sounds to count (ranging from 9 
sounds to 14 sounds). The pauses 
between the sounds in each trial are 
of variable length. 

0–10 
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5.2.6 Data analysis and hypotheses 
We made our data, and the scripts that we used for data analysis available at our 
Open Science Framework (OSF) page: https://osf.io/8gpjt/. 
 Online measures of VSL. During the online self-paced familiarization 
phase, we measured children’s RTs to each individual alien (i.e., time between 
the appearance of the alien on the screen and the child’s space bar press) in 
milliseconds (ms). Prior to analysis, we removed all responses to the three aliens 
of the first triplet of each block (i.e. four triplets, 12 individual aliens per child). 
Also, we removed all RTs shorter than 50 ms (DLD; 0.42% of the total 
observations; typically developing: 0.22% of the total observations). Finally, we 
normalized the RTs, such that they can be interpreted as optimally distributed z 
values. These normalized RTs were obtained by first ranking all N raw RT 
observations, sorting them in increasing order, labelling them with a ranking 
number r (Baguley, 2012, p. 254-358) and then replacing all observations by the 
(r − 0.5) / N quantile of the unit normal distribution. We decided a-priori to 
normalize the raw RTs as with this procedure, we take the data closer to satisfying 
the assumption of normally distributed model residuals, which is a central 
assumption of linear mixed-effects model analysis (package lme4; Version 1.1.17, 
Bates, Maechler, Bolker, & Walker 2015; R programming language: R Core 
Team, 2018). Furthermore, the advantage of working with transformed RT data 
(in general) is that one can include all observations and thus not have to apply an 
arbitrary criterion in removing outlier observations (Simmons, Nelson, & 
Simonsohn, 2011). As a sanity check we visually inspected the model residuals 
from the raw RT model and normalized RT model and indeed observe that the 
residuals of the model with normalized RTs are more symmetrically distributed 
than the residuals of the model with raw RTs (see histograms on our OSF page: 
https://osf.io/8gpjt/). 

The normalized RTs were analysed using a linear mixed-effects model 
that fitted normalized RT as a function of the ternary within-subject predictor 
Predictability (alien 1, alien 2, alien 3), the binary between-subjects predictors 
Group (DLD, typically developing), TripletVersion (triplets A, triplets B) and 
TripletOrder (order 1, order 2), and the continuous within-subject predictor Time 
(repetition of triplets, originally ranging from 1 to 24, after centering and scaling 
ranging from −1.68 to +1.65). All predictors were included in interaction with 
each other, and the random-effects structure of the model contained by-subject (N 
= 72) and by-item (N = 12; individual alien) random intercepts and by-subject 
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random slopes for the main effects of Predictability and Time and for their 
interaction. If children are sensitive to the TPs, then their RTs to predictable aliens 
(alien 2 and 3) should be faster than their RTs to unpredictable aliens (alien 1). 
We will refer to this as the “predictability advantage”. The size of the 
predictability advantage is estimated by the first contrast of the predictor 
Predictability (with alien 1 coded as −3

4 and both alien 2 and alien 3 coded as +5
4). 

A difference in learning between children with DLD and typically developing 
children may be observed in two ways: either we observe a difference in the 
average predictability advantage (interaction between Predictability and Group) 
or in the emergence of a difference in predictability advantage over time 
(interaction between Time, Predictability and Group). The predictor Group is 
coded with DLD as −5

3 and typically developing coded as +5
3. Finally, we included 

the predictors TripletVersion (coded as −5
3 and +5

3) and TripletOrder (coded as −5
3 

and +5
3) as they potentially influence learning. These predictors were not of 

interest to our research question. 
Statistical significance of the predictors that estimate the difference in 

size of the predictability advantage between children with DLD and typically 
developing children (online measure 1), and the difference in the effect of time on 
the predictability advantage between both groups of children (online measure 2; 
i.e., our confirmatory predictors) is assessed via 98.75% profile confidence 
intervals. These confidence intervals are Bonferroni corrected for multiple testing 
as we assess the VSL difference with a total of four measures: two online 
measures and two offline measures. 

Offline measures of VSL. Responses in the triplet recognition task and 
triplet completion task were coded as 1 (correct) or 0 (incorrect), with a maximum 
score of 24 on the triplet recognition task and a maximum of 16 on the triplet 
completion task. If children are sensitive to the TPs between the elements, then 
their correctness probabilities on the offline tasks should exceed chance level 
(33,3% and 50% respectively). The offline accuracy scores were analysed using 
generalized linear mixed-effects models (package lme4, Bates et al., 2015). For 
both offline tasks, correctness probability was fitted as a function of the binary 
predictors Group, TripletVersion and TripletOrder. All predictors were added in 
interaction with each other and the random effects structure of the model 
contained a by-subject (N = 72) random intercept. We will conclude that children 
with DLD have a visual statistical learning deficit if their correctness probabilities 
are significantly lower than those of our typically developing children (main effect 
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of Group). Statistical significance of the confirmatory predictors is assessed via 
98.75% profile confidence intervals. 
 
5.3 Results 
 
5.3.1 Background measures 
Table 5.3 presents the raw scores and – when available – the standardized scores 
on the cognitive and literacy tasks for both groups of children. Between-group t 
tests show that children with DLD have lower (raw) scores on all three literacy 
tasks: word reading (t(70) = −8.60, p = 1.6·10-12); pseudoword reading (t(70) = 
−9.34, p = 8.7·10-14); and spelling (t(70) = −12.45, p = 5.0·10-19). With a norm 
score > 7 being interpreted as “average” performance, we observe that 42% of the 
children with DLD can be classified as “average” readers (i.e., they score > 7 on 
both the [nonce]word reading tests). For the spelling task, 31% percent of the 
children with DLD had a percentile score of 17% or higher, indicating that they 
may be classified as “average” spellers. Finally, we have no evidence that the 
children with DLD perform differently from typically developing children on the 
tasks that measured visuospatial short-term memory (t(69)= −1.83, p = .072), 
visuospatial working memory (t(69) = −1.02, p = .31) and sustained attention 
(t(70) = −0.78, p = .44). Therefore, we decided not to control for these measures 
when comparing VSL in children with DLD and typically developing children. 
Please note that we have missing data on the visuospatial short-term memory and 
visuospatial working memory for one child with DLD. 
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5.3.2 Visual statistical learning in DLD 
In the sections that present the results of our confirmatory research question 
(online and offline visual statistical learning) we only present the model estimates 
for the predictors that are relevant for our hypothesis testing or data checks. The 
full model outcomes are available on our OSF page: https://osf.io/8gpjt/ 

Descriptives I. Children’s mean RTs to all three alien positions (alien 1, 
alien 2, alien 3) across the 24 repetitions of each triplet are visualized for the 
children with DLD and the typically developing children separately in Figure 5.3. 
Descriptively and pooled over the 24 repetitions, children with DLD respond 
fastest to the second alien (M = 807 ms, SD = 624 ms), followed by the third alien 
(M = 812 ms, SD = 588 ms), followed by the first alien (M = 819 ms, SD = 611 
ms). Typically developing children respond fastest to the second alien (M = 858 
ms, SD = 555 ms), followed by the first alien (M = 859 ms, SD = 555 ms), 
followed by the third alien (M = 864 ms, SD = 554 ms). 

Confirmatory results I: Online measures of VSL. If children are 
sensitive to the TPs in the VSL task, we expect to observe a predictability 
advantage. The model estimated that, pooled over the groups, the children 
responded faster to predictable than to unpredictable aliens (main effect of 
Predictability: Dz = −0.011), but this estimate was not significantly different from 
zero (t = −0.95, 98.75% profile CI [−0.041, +0.019], p = .34; Table 5.4). The 
two-way interaction between Predictability and Group estimated that the 
predictability advantage was larger in our children with DLD than in our typically 
developing children (DDz = +0.020), but this estimate was not significantly 
different from zero (t = +0.96, 98.75% profile CI [−0.032, +0.072], p = .34; 
Table 5.4). To obtain an estimate of the maximal standardized effect size (i.e., the 
maximal standardized difference between children with and without DLD), we 
divided the maximal absolute raw effect size (i.e., the greater absolute bound of 
the confidence interval) by the residual standard deviation of the model (residual 
SD = 0.68). The estimate of the maximal standardized effect size is 0.11 
(0.072/0.68). This effect size can be interpreted as a Cohen’s d effect size (Cohen, 
1988) and as it is <0.20, it means that if a difference between children with and 
without DLD exists at all, the difference will be small. 
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Figure 5.3 Visualization (descriptive) of children’s raw (i.e. unnormalized) mean RTs 
(in ms) to the aliens in first position (black circles), in second position (orange 
triangles) and third position (blue squares). The left graph shows the RTs of children 
with DLD, the right graph shows the RTs of typically developing (TD) children. 
Please note that these raw RTs are only displayed for ease of exposition and that they 
do not represent the outcome of our confirmatory hypothesis testing. Therefore, 
(descriptive) differences in these raw RTs cannot be used to interpret the strength of 
the effects reported later in this paper. 
 

We also looked at the model estimate of children’s predictability 
advantage unfolding over time (interaction between Predictability and Time). 
Unexpectedly, the model estimated that the predictability advantage decreased 
over time (DDz = +0.011). This decrease was larger for the children with DLD 
than for the typically developing children (DDDz = −0.015). Both the two-way 
interaction between Predictability and Time and the three-way interaction 
between Predictability, Time and Group were not significantly different from 
zero, however (two-way interaction: t = +1.1, 98.75% profile CI [−0.014, 
+0.037], p = .26; three-way interaction: t = −0.73, 98.75% profile CI [−0.067, 

●
●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

DLD TD

0 5 10 15 20 250 5 10 15 20 25

800

1000

1200

RT
 (i

n 
m

s)
 to

 a
lie

n

Alien
● Alien1

Alien2
Alien3



136   Chapter 5 
 

+0.037], p = .46; Table 5.4). The estimate of the maximal standardized effect size 
for a difference in the emergence of a predictability advantage over time between 
children with DLD and typically developing children is 0.098 (0.067/0.68). 
Again, the maximal standardized effect size is <0.20 and thus, if a difference 
between children with and without DLD exists, the difference will be small. 
 Taken together, the online measures of VSL provide no evidence that 
children are sensitive or insensitive to the TPs or that sensitivity to the TPs 
emerges or does not emerge over time. Also, we have no evidence for or against 
a difference between children with and without DLD.  

Confirmatory results II: Offline measures of VSL. For both offline tasks 
(triplet completion and triplet recognition), the criterion for learning was that the 
correctness probabilities (i.e., model intercepts) exceed chance level (0.333 for 
triplet completion and 0.50 for triplet recognition). The intercepts for both offline 
models estimated that, pooled over both groups of children, children picked the 
correct answer more than one would expect on the basis of chance (triplet 
completion: log odds = −0.099, odds = 0.91, probability = 48%; triplet 
recognition: log odds = +0.53; odds = 1.7, probability = 63%). Both estimates are 
statistically significantly different from chance probability (triplet completion: p 
= 5.9·10-7, 98.75% CI [41%, 55%]; triplet recognition: p = 3.9·10-7; 98.75% CI 
[57%, 69%]).  
 If children with DLD learn fewer triplets than the typically developing 
children, then their correctness probabilities on both tasks should be lower than 
those of the typically developing children. Indeed, on the triplet completion task, 
the model estimated that the ratio by which children picked the correct missing 
alien was 1.1 higher in the typically developing children than in the children with 
DLD. This odds ratio was not significantly different from 1, however (z = +0.66; 
p = .51; 98.75% CI odds ratio [0.67, 2.0], Figure 5.4, Table 5.5A).  
 For the triplet recognition task, the model estimated that the ratio by 
which children picked the correct group of aliens was 0.88 times higher (and thus 
1.1 times worse) in the typically developing children than in children with DLD. 
This odds ratio was not significantly different from 1, however (z = −0.66; p = 
.51; 98.75% CI odds ratio [0.54, 1.5], Figure 5.4, Table 5.5B).  
 To check whether the groups separately showed correctness probabilities 
that exceed chance expectations, we fitted two additional models for both tasks in 
which we re-referenced the contrast coding for the predictor of Group such that 
we obtained estimates for the children with DLD (with contrasts set as DLD 0; 
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typically developing +1) and the typically developing children (DLD +1; TD: 0) 
separately. For both groups of children, and for both tasks, the estimates were 
significantly different from chance (Table 5.5A, Table 5.5B). 
 Taken together, for both populations of children, and for both tasks we 
conclude that children can learn which aliens belong together. We have no 
evidence for or against a difference between DLD and typically developing either 
the completion task or the recognition task.  
 

 
Figure 5.4 Children’s individual correctness probabilities on the triplet completion 
task (left) and triplet recognition task (right). The dashed lines represent chance 
probability (33.3% for the triplet completion task and 50% for the triplet recognition 
task). The crosses indicate the mean correctness probabilities per group (DLD and 
typically developing [TD]). Please note that we did not obtain these correctness 
probabilities from the statistical model. These descriptive data are only displayed for 
ease of exposition and do not represent the outcome of the generalized linear mixed 
model. Therefore, (descriptive) differences in this plot cannot be used to interpret the 
strength of the effects reported later in this paper. 
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 Exploratory results: The link between literacy and VSL. To see if there 
is an association between VSL and literacy in children with DLD, we averaged 
children’s offline VSL measures (triplet completion and triplet recognition), as 
children’s scores on these tasks were positively correlated, and significantly 
different from zero (Pearson r (34) = +.67; 95% CI [+.44, +.82]). 

None of the correlations between VSL and literacy were significantly 
different from zero (word reading: Pearson r (34) = +.070, 95% CI [−.26, +.39; 
pseudoword reading: Pearson r (34) = −.014, 95% CI [−.34, +.32]; spelling: 
Pearson r (34) = +.13, 95% CI [−.20, +.44]; Figure 5.5). Although not part of 
our hypothesis testing, we also explored the correlations between VSL and 
literacy in the typically developing children. None of the explored correlations in 
the typically developing children were significantly different from zero (see 
output at our OSF page: https://osf.io/8gpjt/). 

Taken together, we cannot conclude that offline VSL associates (or does 
not associate) with individual differences in literacy performance in children with 
DLD.  
 

Figure 5.5 Descriptive visualization of the correlation between visual statistical 
learning correctness probability (Accuracy Offline VSL: triplet completion and triplet 
recognition combined) and (A) word reading, (B) nonce word reading and (c) spelling 
in children with DLD. 
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5.4 Discussion 
 
The main aim of the present study was to assess whether children with DLD have 
a nonverbal visual statistical learning deficit. We had expected to observe such 
deficit, since we hypothesized that a domain-general statistical learning deficit 
underlies the language problems observed in children with DLD. The outcomes 
of this study provide no evidence for or against such domain-general visual 
statistical learning deficit in children with DLD. Neither with the online VSL 
measures nor with the offline VSL measures did we detect a difference in learning 
between children with and without DLD. Null results, however, can never be used 
to prove that an effect is absent. Therefore, we can only assign meaning to our 
findings by showing that, if a difference would exist at all, this difference would 
be small. We estimated the magnitude of the DLD–typically-developing 
differences using estimates of the maximal standardized effect sizes (see Results), 
and found that the maximal standardized effect sizes for both our online measures 
are below 0.20, meaning that if a DLD–typically-developing difference existed at 
all, this difference would be small (Cohen, 1988). With the offline measures, we 
observe that children with DLD either perform maximally 2.0 times worse (upper 
bound CI) or 1.5 times better (lower bound CI) than typically developing children 
on the triplet completion task, and maximally 1.5 times worse or 2.0 times better 
on the triplet recognition task. As there is no general consensus on how to interpret 
the magnitude of odds ratio effect sizes, we refrain from calling these effect sizes 
small, medium or large (but see Chen, Cohen, & Chen, 2010).  

A limitation of the present study is that the online measures could not 
detect children’s learning of the visual regularities. Therefore, even if a difference 
between children with and without DLD exists, it is the question whether such a 
difference will be meaningful. Our small (and statistically nonsignificant) result 
for the online measure (pooled over groups) of Dz = −0.011 falls within the 
(statistically significant) predictability advantage found (for typically developing 
children) by van Witteloostuijn, Lammertink et al. (2019) which ranged from Dz 
= −0.114 to Dz = −0.002. Van Witteloostuijn, Lammertink et al. (2019) already 
concluded that the predictability advantage effect can be called small, meaning 
that if it could be detected at all, the effect may be too small to be reliably detected 
across studies or between different participant groups. As such the outcomes of 
the present study fit within a series of recently published papers that investigate 
the psychometric properties of statistical learning designs. These studies address 
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(a) the reliability of statistical learning tasks in their ability to capture individual 
differences in children’s (language) learning ability (Arnon, 2019), but also (b) 
the validity of the tasks in measuring the construct of statistical learning (West et 
al., 2017). As the present study was not designed to assess the psychometric 
properties (i.e., split-half reliability and test-retest reliability) of our visual task 
we cannot draw any conclusions with respect to these issues. Nevertheless, we 
deem it important to place our study within this debate and to refer the interested 
reader to relevant papers on this issue (e.g., Arnon, 2019; Siegelman, Bogaerts, & 
Frost, 2017; West et al., 2017). 
 Interestingly, our offline measures of VSL indicate that both children 
with and without DLD are sensitive to the transitional probabilities between the 
aliens. The children completed and recognized the triplets with correctness 
probabilities that exceed chance expectation. This may be a preliminary indication 
that children with DLD are sensitive to TPs in the nonverbal visual domain. This 
conclusion could not be drawn in Noonan (2018), who also studied VSL in 
children with DLD, because Noonan could not detect a learning effect in children 
with and without DLD. It may thus be illuminating to highlight some differences 
between both studies. Firstly, as we used a self-paced familiarization phase, 
children were exposed to the stimuli at their own pace. This is different from the 
Noonan study in which the children were presented with the stimuli at a fixed 
presentation rate. Secondly, in line with the task instructions given by Siegelman, 
Bogaerts, Kronenfeld et al., (2018), we instructed the children to pay attention to 
the order in which the aliens appeared. Even though with these instructions we 
gave no information about the triplet patterns, our instructions are likely to be 
more explicit than the “deliberately vague (Noonan, 2018, p.84)” instructions 
given by Noonan. Thirdly, the stimuli that we used were more colourful, less 
abstract and thus easier to verbalize than the black, abstract shapes used in Noonan 
her study. Finally, the present study contained fewer triplets (four triplets) than 
the study by Noonan (five triplets). We speculate that the abovementioned 
differences made learning of the structure in present study easier or more explicit 
than in the study by Noonan. As offline measures of statistical learning are 
proposed to measure more explicit representations of acquired knowledge 
(Franco, Eberlen, Destrebecqz, Cleeremans, & Bertels, 2015), this may be one of 
the reasons that we did detect a learning effect in the offline measures. 

For the children with DLD, we also investigated the link between their 
VSL performance and literacy skills, but found no evidence for or against the 
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existence of such a link. The confidence intervals for the association between VSL 
and our literacy measures ranged from r = −.26 to +.39 (reading), r = −.34 to 
+.32 (pseudoword reading) and from r = −.20 to +.44 (spelling). The estimated 
upper bounds of the “standardized” effect sizes for these associations are R2 = .15 
(.392), R2 = .10 (.322) and R2 = .19 (.442) respectively, indicating that if 
associations exist, these may be small in size (as all standardized effect sizes are 
<0.20 Cohen, 1988). Null results for the relationship between VSL and literacy 
have recently been reported in other studies with typically developing children 
(e.g., Schmalz, Moll, Mulatti, & Schulte-Körne, 2018) and in children with DLD 
(Noonan, 2018).  

Given these small effects, the only notable – and probably unsatisfactory 
– conclusion that we can draw is that the currently available measures of VSL are 
not sensitive enough to detect differences in VSL between children with DLD and 
typically developing children (see Arnon, 2019; Arciuli & Conway, 2018; 
Noonan, 2018; Schmalz et al. 2018, and West et al. 2017, for similar conclusions). 
We do believe that publication of our null results is important, however. Null 
results should be published to overcome existing publication biases (van 
Witteloostuijn et al., 2017; Schmalz et al., 2017) and, because the data should be 
available for researchers who wish to conduct meta-analyses on this topic. 

We have reasons to believe that our null results are not the result of the 
power of our study being too low to detect the effects under examination: Firstly, 
in comparison to serial reaction time studies, the number of children with DLD 
tested for the present study is relatively large (only two out of the eleven published 
serial reaction time studies tested more than 36 children, Hsu and Bishop, 2014a; 
Conti-Ramsden, Ullman, & Lum, 2015). Secondly, looking at our outcomes we 
observe (a) a learning effect with our offline measures of learning, (b) a small 
DLD–typically-developing difference in online visual statistical learning and (c) 
small correlations between visual statistical learning and literacy in children with 
DLD. The detection of an effect (a) indicates that we tested sufficiently children 
to detect offline visual statistical learning. As for (b) and (c), the confidence 
intervals of the standardized effect sizes for these effects indicate that if the effects 
exist, the true effects lie between 0 and small; that’s a small range. In an 
underpowered study this range would have been large. Finally, as we selected our 
children with DLD according to strict in- and exclusion criteria, we do not think 
that our results are driven by the use of an unrepresentative group of children with 
DLD. This claim is supported by our background measures in which children with 
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DLD show impairments in sentence recall, receptive vocabulary knowledge 
(clinical markers of the disorder) and reading performance, as compared to their 
typically developing peers.  

At this point we would also like to reiterate that the theoretical question 
on the domain-generality of the statistical learning deficit is important (Elleman, 
Steacy, & Compton, 2019; Arciuli and Conway, 2018). Results of the present 
study provide evidence that children with DLD are sensitive to nonverbal 
regularities in the visual domain. From this we tentatively conclude that if children 
with DLD have a statistical learning deficit, this deficit may not be domain-
general. Furthermore, in light of the linguistic entrenchment hypothesis as put 
forward by Siegelman, Bogaerts, Elazar et al. (2018) another possibility is that the 
statistical learning deficit with linguistic materials observed in children with DLD 
(for an overview of two meta-analysis supporting this claim see: Lammertink et 
al., 2017 [Chapter 2 of this dissertation], Obeid et al. 2016) does not necessarily 
reflects reduced sensitivity to statistical regularities, but that – due to their 
language deficit – children with DLD have fewer expectations on the underlying 
structure than typically developing children. Following this line of reasoning, in 
order to test the hypothesis that children with DLD are less sensitive to statistical 
regularities, we need to show that it is not their reduced prior knowledge of 
structure that impacts their statistical learning performance. The challenge is thus 
to develop tasks that are able to detect learning of statistical regularities in verbal 
and nonverbal materials while controlling for prior knowledge and individual 
differences of such knowledge. 
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Chapter 6 
Statistical learning in the visuomotor domain and its 
relation to grammatical proficiency in children with and 
without developmental language disorder: A conceptual 
replication and meta-analysis 
 
This chapter is a slightly modified version of the paper that is under review for 
publication as: 
 
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (under review). Statistical 
learning in the visuomotor domain and its relation to grammatical proficiency in 
children with and without DLD: A conceptual replication and meta-analysis. 
 
Data and scripts for analyses: https://osf.io/e9w43/ 
 
Abstract 
Children with developmental language disorder (DLD) have difficulties acquiring 
the grammatical rules of their native language. It has been proposed that children’s 
detection of sequential statistical patterns correlates with grammatical proficiency 
and hence that a deficit in the detection of these regularities may underlie the 
difficulties with grammar observed in children with DLD. Although there is some 
empirical evidence supporting this claim, individual studies, both in children with 
and without DLD, vary in the strength of their reported associations. The aim of 
the present study is therefore to evaluate the evidence for the proposed 
association. This is achieved by means of (a) a conceptual replication study on 35 
children with DLD and 35 typically developing children who performed the serial 
reaction time task and a test of grammatical proficiency and (b) a meta-analysis 
over 18 unique effect sizes, which collectively examined the serial reaction time 
task – expressive grammar correlation in 139 children with DLD and 453 typically 
developing children. Both outcomes provide no evidence for or against the 
existence of the proposed association. Neither do they provide evidence for a 
difference in the strength of the association between both groups of children.  
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6.1 Introduction 
 
When acquiring their native language, children unconsciously detect and process 
structural regularities that facilitate word extraction, the induction of phonological 
and grammatical categories and the representation of (morpho)syntactic rules 
(Erickson and Thiessen, 2015; Mintz, 2003; Saffran, Aslin, & Newport, 1996; 
Wijnen, 2013). It has been proposed that children detect and process these 
regularities via statistical learning. Evidence that statistical learning may play a 
role in language development comes from two different sources. Firstly, a number 
of studies has reported on associations between children’s statistical learning 
ability and different aspects of language (vocabulary size: e.g., Evans, Saffran, & 
Robbe-Torres, 2009; syntactic processing: Kidd, 2012; Kidd & Arciuli, 2016; 
Misyak, Christiansen, & Tomblin 2010; Misyak & Christiansen, 2012; 
grammatical proficiency: Hamrick, Lum, & Ullman, 2018; reading: Arciuli, 2018 
and spelling: Treiman, 2018). Secondly, there is evidence for a statistical learning 
deficit in children who have developmental language disorder (DLD, Evans et al., 
2009; Hsu & Bishop, 2014a; Lammertink, Boersma, Wijnen, & Rispens, 2017 
[Chapter 2 of this dissertation], 2019 [Chapter 4 of this dissertation]; Obeid, 
Brooks, Powers, Gillespie-Lynch, & Lum 2016). By definition, children with 
DLD exhibit difficulties with language, across multiple areas (lexicon, 
phonotactics, morphology, morphosyntax, syntax, discourse) in the absence of a 
known biomedical cause, intellectual disability, or unfavourable psycho-
social/educational conditions (Bishop, Snowling, Thompson, & Greenhalgh, 
2017). Despite heterogeneity in the language difficulties observed across children 
with DLD, almost all children with DLD struggle with the acquisition of the rule-
based aspects (i.e., morphology, syntax, morphosyntax, phonology and 
phonotactics) of language (Leonard, 2014). Given that the detection of these rule-
based aspects of language may depend on the detection of sequential statistical 
regularities, their problems with these components of language may be explained 
by a statistical learning deficit (or a procedural learning deficit, see below; Evans 
et al., 2009; Hsu & Bishop, 2014a; Lammertink et al. 2017 [Chapter 2 of this 
dissertation], 2019 [Chapter 4 of this dissertation]; Obeid et al., 2016; Ullman & 
Pierpont, 2005; Ullman & Pullman, 2015). 
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6.1.1 A deficit in the detection of sequential regularities 
The serial reaction time task (task design is explained in more detail below) is 
frequently used to assess children’s sensitivity to sequential statistical regularities 
(i.e. sensitivity to differences in the transitional probability from one element to 
another element over time). Sensitivity to such sequential statistical information 
has been proposed to underlie the acquisition of grammatical rules in language. 
For example, in the English present tense, singular subjects frequently co-occur 
with [s]-marking on the verb (subject–verb agreement as in the child walks). In 
order to learn subject–verb marking, children need to detect that there is a 
grammatical relation between a singular subject and verb-plus-[s] marking. Other 
than sequential statistical regularities, it has also been shown that people are 
sensitive to distributional statistics (e.g., Maye, Werker, & Gerken, 2002) and 
cross-situational statistics (Smith & Yu 2008; Yu & Smith, 2007). However, the 
focus of the present study is on children’s detection of sequential statistical 
regularities and the relation between sequential statistical learning and 
grammatical proficiency. Consequently, we may use the terms statistical learning 
and sequential statistical learning interchangeably in this paper.  

Sensitivity to sequential regularities also plays a key role in the 
declarative/procedural model of language (Ullman, 2014) and the associated 
procedural learning deficit hypothesis (Ullman & Pierpont, 2005; sometimes 
referred to as “declarative memory compensation hypothesis”, see Ullman & 
Pullman, 2015). In short, and skipping over the nuances, the 
declarative/procedural model of language states that the acquisition of rule-based 
aspects of language (such as grammar) is supported by a procedural memory 
system, whereas the acquisition of lexical knowledge is linked to a declarative 
memory system. Similar to the predictions from the statistical learning literature, 
the declarative/procedural model of language predicts a correlation between 
children’s sensitivity to sequential regularities and their grammatical proficiency. 
Furthermore, the procedural learning deficit hypothesis also predicts reduced 
sensitivity to sequential statistical regularities in children with DLD as compared 
to their typically developing peers. According to the procedural learning deficit 
hypothesis, this declarative learning mechanism is relatively spared in children 
with DLD, and children with DLD may even compensate their procedural 
learning deficit via declarative learning. That is, in learning the grammatical rules 
of their language, children with DLD may rely more on their declarative learning 
system than their procedural learning system (Ullman & Pullman, 2015). This 
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declarative memory compensation hypothesis predicts weaker associations 
between procedural learning and grammatical proficiency in children with DLD 
as compared to typically developing children (note that this weaker association 
does not mean that the hypothesis predicts no correlation between procedural 
learning and grammatical proficiency in children with DLD; as explained in Lum, 
Conti-Ramsden, Page and Ullman, 2012, it is still likely that such an association 
also exists in children with DLD). To the best of our knowledge, statistical 
learning deficit accounts do not necessarily predict a difference in the strength of 
the correlation between both groups of children.  

In summary, both the statistical learning deficit hypothesis and the 
procedural deficit hypothesis argue that children with DLD may have a deficit in 
their detection of sequential patterns and both accounts predict that typically 
developing children outperform children with DLD on any learning task that 
requires the detection of sequential statistical patterns (the serial reaction time task 
being a prime example of such a task). Evidence for the existence of a sequential 
learning deficit in children with DLD as compared to typically developing 
children comes from studies that investigated this type of learning in both groups 
of children in the auditory domain (see meta-analysis by Lammertink et al., 2017 
[Chapter 2 of this dissertation]) and in the visuomotor domain (see meta-analysis 
by Lum, Conti-Ramsden, Morgan, & Ullman, 2014). Also, the meta-analysis by 
Obeid et al. (2016) that included studies from both domains, concludes that 
children with DLD have a statistical learning deficit. Furthermore, both the 
statistical learning deficit hypothesis and the procedural learning deficit 
hypothesis predict that children’s performance on the serial reaction time task 
correlates with grammatical proficiency. A quantitative summary (meta-analysis) 
of studies investigating such associations in typically developing children 
learning their first language provided evidence that this is indeed the case 
(Hamrick et al., 2018). Although the correlation between serial reaction time task 
performance and grammatical proficiency in children with DLD has been 
investigated (see next section) in several studies, a qualitative summary of all 
these studies does not exist yet, but is needed in order to obtain an estimate of the 
strength of the sequential statistical learning – grammatical proficiency 
relationship in children with and without DLD. Also, a meta-analysis allows for 
exploration of moderators of the association that may be difficult to assess with 
one single study (Black & Bergmann, 2017), for example the effect of age and 
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sequence type (first-order conditional versus second-order conditional, as 
explained later on).  
 
6.1.2 Statistical learning and grammatical proficiency: The need for 
replication 
The discussion above reveals that there is some empirical evidence that sequential 
statistical learning (measured with the serial reaction time task) correlates with 
grammatical proficiency in typically developing children. At the same time, a 
closer look at the outcome of Hamrick et al.’s meta-analysis reveals that the 95% 
confidence interval of the average weighted correlation between serial reaction 
time task proficiency and grammatical proficiency ranges from +.009 to +.495. 
This means that, in the sense of Cohen (1992), the strength of the association in 
typically developing children varies between being “small” and being “medium 
to large”. This relative wide confidence interval indicates that the strength of the 
associations reported in individual studies varies strongly. Indeed, in the studies 
on typically developing children, the point estimate correlations run from r = −.43 
(Spit & Rispens, 2018) to +.67 (Kidd, 2012). Also, in studies on this association 
in children with DLD the observed range of point estimates is large: the point 
estimates run from r = −.46 (Gabriel, Meulemans, Parisse, & Maillart, 2015) to 
+.46 (Gabriel, Maillart, Stefaniek, Lejeune, Desmottes, & Meulemans, 2013). All 
together, this suggests a large variability in the size and existence of the proposed 
association between children’s serial reaction time performance and their 
grammatical proficiency, and thus that the association may not be as robust as 
commonly thought.   

Motivated by these apparent large differences in observed associations, 
as well as the general replication crisis and the documented existence of 
publication biases (“file drawer problem”) in developmental psychology (Frank 
et al., 2017), the aim of the present study is to evaluate the existence and strength 
of the association. This is done by (a) a conceptual replication of previous 
experiments on a visuomotoric statistical learning deficit in children with DLD 
and (b) a quantitative summary (meta-analysis) of the studies that investigated the 
proposed association between serial reaction time performance and grammatical 
proficiency in children with and without DLD. This meta-analysis also allows us 
to assess the evidence for publication bias and to explore whether the serial 
reaction time task–grammatical proficiency correlation differs between children 
with and without DLD. It may be important to highlight that our meta-analysis 
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serves a different goal than the meta-analysis on serial reaction time performance 
and grammatical proficiency conducted by Hamrick et al. (2018). Hamrick et al. 
aimed to test the predictions of the declarative/procedural model in first and 
second language learners (Ullman, 2014), whereas we focus (a) on the relation 
between serial reaction time performance and grammatical proficiency only, 
leaving the relationship between declarative learning and lexical knowledge aside, 
and (b) we focus on different populations, namely children with and without DLD. 
This different focus, together with the inclusion of studies on typically developing 
children that were published after Hamrick et al. (2018) completed their analysis, 
makes our analysis substantially different from the one conducted by Hamrick et 
al. (additional studies that we include: Clark & Lum, 2017; Desmottes, Maillart, 
& Meulemans, 2017; Hani, 2015; Hsu & Bishop, 2014a; Kuppuraj, Rao & Bishop, 
2016; Mimeau, Coleman, & Donlan, 2016; Obeid, 2017; Park, Miller, Rosenbaum 
et al., 2018; Spit & Rispens, 2018; West, Vadillo, Shanks, & Hulme, 2017; West, 
Shanks, & Hulme, 2018). 
 
6.1.3 The serial reaction time task 
As stated above, the serial reaction time task is one of the most commonly used 
tasks to assess children’s sensitivity to a fixed sequence in the visuomotor domain. 
In this fixed sequence (“structured trials”), the appearance of a visual stimulus 
follows a repeating sequence of predefined positions on a computer screen. In the 
task, sensitivity to sequential structure is usually operationalized as the difference 
in response times to structured versus random trials. After repeated exposure to 
structured trials, random trials elicit slower responses than structured trials. After 
the introduction of the serial reaction time task by Nissen and Bullemer (1987), 
different versions of the task have been used. These versions differ, amongst other 
factors, in the length of the repeating sequence, in the sequence structure (first-
order conditional versus second-order or higher-order conditional, explained 
below), in the response device used (response box, keyboard, touch screen), and 
in the number of trials to which participants are exposed. These aspects may 
impact performance: the meta-analysis on serial reaction time performance in 
children with and without DLD from Lum et al. (2014), for example, showed that 
longer exposure to the sequenced trials leads to smaller differences in 
performance between children with and without DLD. 

In the experimental part (i.e., our conceptual replication) of the present 
study, we use a serial reaction time task identical to the one used by Lum and 
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Kidd (2012). We decided to work with this serial reaction time task as the design 
of this task is comparable, in terms of the sequence type used (first-order 
conditional) and the block structure used (structured versus random blocks), to 
serial reaction time tasks that are commonly used to assess the presence of a 
visuomotoric statistical learning deficit in children with DLD (e.g., Clark & Lum, 
2017; Conti-Ramsden, Ullman, & Lum 2015; Hsu & Bishop, 2014a; Park et al., 
2018). Thus, our experimental study can be seen as a conceptual replication of 
earlier work on the presence of a visuomotoric statistical learning deficit in 
children with DLD. That is, our task design does not differ in any significant way 
from earlier studies on this topic (for a definition of the term “conceptual 
replication” see Black and Bergmann, 2017). 

As will also become clear from our meta-analysis, not all studies on serial 
reaction time task performance in children with and without DLD work with first-
order conditional sequences, however. Some studies also assessed the size of the 
learning deficit using second-order (or even higher-order) conditional sequences. 
In first-order conditional sequences, each position can be predicted (albeit with 
varying degrees of probability) from the previous position and thus the sequence 
can be learned from adjacent dependencies. In second-order conditional 
sequences, each position occurs equally often and also each adjacent pair of 
positions occurs equally often; therefore, all pairwise transitions are ambiguous 
and the next position can only be learned from the previous two positions (Cohen, 
Ivry, & Keele, 1990). The use of first-order conditional sequences versus second-
order conditional sequences may impact the strength of the association between 
serial reaction time performance and grammatical proficiency, as learning of 
second-order conditional sequences may require different (or additional) 
cognitive processes than learning of first-order conditional sequences (Clark, 
Barham, Ware et al., 2019; Wilson, Spierings, Ravignani et al., 2018). Also, 
second-order conditional structure may more closely mimic the long-distance 
dependencies often reflected in the morphological and morphosyntactic rules of 
natural languages than the adjacent dependencies in first-order conditional 
sequences (Wilson et al. 2018). Our meta-analysis (in the second part of this 
paper) explores if the strength of the association between serial reaction time 
performance and grammatical proficiency depends on the use of second-order 
conditional sequences versus first-order conditional sequences.  
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Study 1: Experimental study 
 
6.2 Methods experimental study 
 
6.2.1 Participants  
Thirty-seven children with DLD and fifty-nine typically developing children, 
aged between seven and twelve years of age, participated in the experiment. We 
informed everyone involved in the recruitment process that recruitment and 
testing had to fit within a predetermined testing period that ran from January 2017 
to March 2018, and we recruited and tested as many children as possible in the 
available recruitment time. We obtained approval from the ethical review 
committee of the University of Amsterdam, Faculty of Humanities. For the 
participants with DLD, their parents or caregivers gave informed consent prior to 
their children’s participation in the study. Typically developing children were 
enrolled on an opt-out basis. As explained in the Procedure section, the same 
children with and without DLD also participated in Lammertink, Boersma, 
Wijnen and Rispens (2020, [Chapter 5 of this dissertation]) and in Lammertink et 
al. (2019, [Chapter 4 of this dissertation]), but there is no overlap in the tasks. 
Furthermore, data from a subset of the typically developing children that 
participated in this study are also reported on in van Witteloostuijn, Boersma, 
Wijnen, & Rispens, 2019a, 2019b, submitted).  

Children with DLD. We recruited children with DLD through four 
national organizations in the Netherlands (The Royal Auris Group, the Royal 
Kentalis Group, Pento, Viertaal) and through an association for parents of children 
with DLD (FOSS/ stichting Hoormij). All children had received the diagnosis of 
DLD by licensed clinicians before participating in the present study, and were 
additionally selected to meet all of the following criteria: (a) they had scored at 
least 1.5 standard deviations below the norm on two out of four subscales (speech 
production, auditory processing, grammatical knowledge, lexical semantic 
knowledge) of a standardized language assessment test battery administered by a 
licensed clinician (but not as part of our own test battery); (b) at least one of their 
parents was a native speaker of Dutch; and (c) they had not been diagnosed with 
autism spectrum disorder, attention deficit hyperactivity disorder, or other 
(neuro)physiological problems. Finally, our test battery included the Raven 
Progressive Matrices subtest (Raven, Raven, & Court, 2003), a standardized 
measure of nonverbal intelligence, on which the participants had to obtain a 
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percentile score of at least 17%, which is the lower bound of the normal range, to 
be included in our final sample. This means that the children in our sample also 
met the criterion for having specific language impairment (for a discussion on the 
labels DLD versus specific language impairment, see Bishop et al., 2017). After 
testing, we had to exclude two children with DLD: one child because of technical 
problems and one child because of a hearing problem that had only been 
diagnosed during the testing period. 

Typically developing children. We recruited the typically developing 
children through four different primary schools across the Netherlands. We used 
the Raven Progressive Matrices subtest (Raven et al., 2003), the one-minute-real-
word reading test (Brus & Voeten, 1979), the two-minute nonce-word reading test 
(van den Bos, Spelberg, Scheepstra, & de Vries, 1994), a test of spelling (Braams 
& de Vos, 2015) and the sentence recall test from the Clinical Evaluation of 
Language Fundamentals–Dutch version (Semel, Wiig, & Secord, 2010) to 
determine if children met our inclusion criteria for the typically developing 
children (all these tasks were part of our own task battery, see Procedure section). 
We excluded children that scored below the normal range on the Raven 
Progressive Matrices and/or on two or more of the four language tasks mentioned 
above. Additionally, we also excluded children from the typically developing 
group if they had been diagnosed with autism spectrum disorder, attention deficit 
hyperactivity disorder, or with other (neuro)physiological problems. In total, we 
excluded five children by the first criterion and one child by the second criterion. 
From the remaining 53 typically developing children, we selected 35 children that 
matched best with our DLD sample, considering age, gender, socioeconomic 
status (on the basis of postal code; Sociaal en Cultureel Planbureau, 2017) and 
nonverbal intelligence (Raven et al., 2003). We refer to Table 6.1 for a summary 
of the relevant group characteristics.  
 
6.2.2 Materials 

Serial reaction time task. We used the serial reaction time task identical 
to the one used by Lum and Kidd (2012). Children were seated in front of a 
Microsoft Surface 3 tablet computer screen, with a gamepad controller attached 
to the computer, which was running E-prime (Version 2.0; 2012) software. A 
visual stimulus (a cartoon picture of a smiley) appeared repeatedly in one of four 
marked locations on the screen and we instructed children to press the 
corresponding button on the gamepad controller as quickly and accurately as 
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possible. Each stimulus was visible until the child pressed the corresponding 
button, with a maximum response time of 3 seconds. After the child had 
responded, there was a 250-millisecond interval before the next stimulus 
appeared. Before the start of the real test, we presented children with 28 practice 
trials to ensure that they understood the task. Unbeknownst to the children, we 
had divided the stream of stimuli into seven blocks. The first block (20 trials) and 
sixth block (60 trials) contained trials in a random sequence (“random trials”), 
whereas the trials in blocks 2 through 5 and in block 7 followed a 10-item 
deterministic, first-order conditional sequence that was repeated six times (thus 
60 trials per block in total). The sequence, where the numbers 1-4 represent the 
four locations on the screen, was [4, 2, 3, 1, 2, 4, 3, 1, 4, 3]. We refer to these 
sequenced blocks as “sequenced blocks” and to block 6 as the “disruption block”.  

Sentence recall task. We measured children’s productivity of 
(morpho)syntactic rules with the sentence recall task – a subtest of the Dutch 
Clinical Evaluation of Language Fundamentals test battery (CELF-4-NL; Semel 
et al., 2010). In this task, children are instructed to recall sentences with increasing 
length and complexity. Following the guidelines of the CELF-4-NL, responses 
are assigned points in relation to the number of errors (e.g., omissions, additions, 
replacements, substitutions, switches, incorrect markings) made in recalling the 
sentence. Children receive three points for fully correct recalls, two points for 
recalls with one error, one point for recalls with two or three errors and zero points 
for recalls with four or more errors, with a maximum number of 93 points. The 
task terminates when a child scores zero points on five consecutive recalls. 

 
6.2.3 Procedure 
All children took part in our larger study on the relation between statistical 
learning and grammar and literacy proficiency in children. The total task battery 
contained more tasks than described here (2 additional statistical learning tasks 
and a set of additional language tasks and cognitive tasks). The other tasks are 
described in Lammertink et al., (2020, [Chapter 5 of this dissertation]) and 
Lammertink et al. (2019, [Chapter 4 of this dissertation]).  
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All children completed the full task battery, and this took two to four sessions per 
child. Each child was tested individually. We randomly allocated each child to 
one of the six different orders in which task administration took place. 
 
6.2.4 Data analysis 
We measured accuracy and response time (in milliseconds) of each trial. The 
accuracy measure served as a sanity check (see Descriptive results), whereas the 
response time measure was used to assess children’s sensitivity to the underlying 
structure. We hypothesized that if children were sensitive to the 10-item 
deterministic sequence, they would show a disruption peak in their response time 
trajectory, such that their response times in the disruption block (block 6) are 
longer than their response times in the preceding and following sequenced blocks 
(block 5 and block 7). Also, we hypothesized that children with DLD would show 
a statistical learning deficit, hence that the size of their disruption peak would be 
smaller than the size of the peak in typically developing children. We obtained an 
estimate of the size of the disruption peak by selecting children’s correct 
responses to trials in blocks 5, 6 and 7.  

In analogy to our earlier work (Lammertink, et al., 2019, 2020 [Chapter 
4 and Chapter 5 of this dissertation respectively), we normalized children’s raw 
response times such that they can be interpreted as optimally distributed z values 
(see our analysis script at our Open Science Framework (OSF) page: 
https://osf.io/e9w43/ and previous work for normalization procedure). Then, we 
used a linear mixed-effects model that fitted these normalized response times as 
a function of ternary predictor Block (block 5, block 6, block 7) in interaction 
with the binary predictor Group (DLD, typically developing children) to assess 
the size of the statistical learning deficit. The random-effects structure of this 
model contained by-subject (N = 70) and by-position (N = 4) random intercepts, 
by-subject random slopes for the main effect of Block and by-position random 
slopes for the main effect of Group. The ternary predictor Block was coded such 
that the first contrast of this predictor (“DisurptionPeak”) estimated the size of the 
disruption peak, with the disruption block coded as +#

&
 and with both sequenced 

blocks coded as −"
&
. This predictor DisruptionPeak can be seen as a sanity check, 

as finding a positive (and statistically significantly different from zero) estimate 
means that we detected learning, pooled over both groups of children, in our serial 
reaction time task. The binary predictor Group was coded with DLD as −"

#
, and 

with typically developing children as +"
#
. A positive (and statistically 
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significantly different from zero) estimate for the interaction between the first 
contrast of the predictor Block and the predictor Group intends to answer our first 
confirmatory research question, namely whether children with DLD have smaller 
disruption peaks than typically developing children. We assessed statistical 
significance of both estimates via 95% profile confidence intervals and wrote the 
get.p.value function (see Rmarkdown functions script at our OSF) to obtain the 
corresponding p values from the profiles iteratively (see also Lammertink et al., 
2019 [Chapter 4 of this dissertation]).  
 We also computed individual disruption peaks. These individual 
disruption peaks were used to answer our second confirmatory research question: 
what is the strength of the correlation between children’s performance on the 
serial reaction time task and their performance on the sentence recall task? We 
estimate the strength of this correlation for both groups of children separately. In 
obtaining individual disruption peaks for the children with DLD, we fitted the 
model described above, but with the predictor Group coded as 0 for DLD and as 
+1 for typically developing. Then, we extracted with the ranef function in R 
(Bates et al., 2015) participants’ (with DLD) random slopes for the predictor 
DisruptionPeak. We used these random slopes as individual disruption peaks. In 
obtaining individual disruption peaks for the typically developing children, we 
undertook the exact same steps, except that the predictor Group was coded +1 for 
DLD and as 0 for typically developing.  
 
6.3 Results experimental study 
 
In what follows, we present only the descriptive results and model estimates that 
are relevant for our data checks or confirmatory hypothesis testing. All other 
outcomes are available in the main data analysis script on our OSF project page: 
https://osf.io/e9w43/. On that page we also made our data available.  
 
6.3.1 Descriptive results 
We have no evidence that children with DLD make more (or fewer) errors than 
typically developing children (pooled over blocks 2 through 7: accuracy children 
with DLD = 92%; accuracy TD children = 94%, t = −0.63, p = .53, 95% CI 
accuracy group difference [−0.054%, +0.028%]). After removing children’s 
incorrect responses and their responses faster than 50 milliseconds (RT < 50 
milliseconds: 0.1% in DLD and 0.07% in typically developing children), we 
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calculated the mean raw response times (in milliseconds) with their corresponding 
standard deviations (in milliseconds) for each block and each group separately 
(Table 6.2). These raw response times and standard deviations are computed for 
ease of exposition only and cannot be used to interpret the strength of effects 
reported later in this paper. 
 

Table 6.2 Descriptive mean raw response times and standard deviations (in 
parentheses), both in milliseconds for the sequenced blocks and disruption blocks 
for the children with DLD and the typically developing children separately 
 Block 2 

(seq.) 
Block 3 
(seq.) 

Block 4 
(seq.) 

Block 5 
(seq.) 

Block 6 
(disr.) 

Block 7 
(seq.) 

DLD 679 
(327) 

685 
(351) 

705 
(384) 

698 
(399) 

784 
(402) 

717  
(383) 

TD 678 
(314) 

704 
(359) 

700 
(354) 

729 
(411) 

798 
(402) 

708  
(357) 

Note. TD = typically developing; Seq. = sequenced; disr. = disruption. 
 
6.3.2 Performance on the serial reaction time task  
Though not part of our confirmatory hypothesis testing, we did check whether, 
pooled over both groups of children, we have evidence that children learned the 
sequence. The predictor that estimated the size of the learning effect 
(“DisruptionPeak”) was positive and statistically significantly different from zero 
(Dz = +0.25, t = 8.18, 95% profile CI [+0.19, +0.31, p = 7.4·10-9], from which 
we conclude that children can learn the sequence. To obtain a standardized effect 
size of this learning effect we divided the estimate by the residual standard 
deviation (which is 0.86) of the model. The resulting effect size is 0.29 (0.25/0.86) 
and can be interpreted as a Cohen’s d effect size (Cohen, 1988). To answer our 
first confirmatory research question, we looked at the estimate for the interaction 
between the predictors DisruptionPeak and Group. This estimate was positive 
(DDz = +0.019): the disruption peak was larger in our typically developing 
children than in our children with DLD, although the estimate is not significantly 
different from zero (t = 0.32, 95% profile CI [−0.10, +0.14], p = .75; effect size 
= 0.022 [0.019/0.86]). Therefore, we cannot conclude that the size of the 
disruption peak differs or does not differ between typically developing children 
and children with DLD in general (Figure 6.1). To further explore whether both 
groups of children separately showed a statistically significant disruption peak, 
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we fitted two additional models on the exact same data, but with different contrast 
settings for the predictor Group (e.g., with DLD coded as 0 and TD coded as +1 
to estimate the disruption peak in DLD). The estimate for the size of the disruption 
peaks in both groups of children was positive (DLD: Dz = +0.24; Typically 
developing: Dz = +0.25) and statistically significantly different from zero (DLD: 
t = 5.56, 95% profile CI [+0.15, +0.32, p = 4.6·10-7, point estimate effect size: 
0.28; Typically developing: t = 6.02, 95% profile CI [+0.17, +0.34, p = 6.2·10-8, 
point estimate effect size: 0.29). From this we conclude that both children with 
DLD and typically developing children are sensitive to the regularities in the 
input. 
 

 
Figure 6.1 Model estimates of the normalized response times to the items across block 
5 (sequenced), block 6 (disruption) and block 7 (sequenced). Normalized response 
times are plotted for the children with DLD (circles, solid line) and typically 
developing children (triangles, dashed line) separately. 
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6.3.3 Serial reaction time task performance and expressive grammatical 
proficiency 
To answer our second confirmatory research question, we used the cor.test 
function in R (R core team, 2018) to compute Pearson correlations between the 
sizes of children’s individual disruption peaks and their scores on the sentence 
recall task. In both groups, the confidence intervals for the correlation include 
zero and thus we found no evidence for or against a relationship between 
children’s size of the disruption peak and their score on the sentence recall task 
(DLD: r (33) = −.33, 95% CI [−.60, +.00]; TD: r (33) = +.18, 95% CI [−.16, 
+.48], Figure 6.2).  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Sentence recall score 

Figure 6.2 Descriptive visualization of the correlation between the size of children’s 
individual disruption peak (centered and scaled, vertical axis) and their average points 
obtained on the sentence recall task from the CELF (centered and scaled, horizontal 
axis). The correlation for children with DLD is plotted with black circles and on the 
left side. The correlation for typically developing children in plotted with black 
triangles and on the right sight. Each circle and triangle represent the correlation for 
an individual child. TD = typically developing. 
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6.4 Discussion experimental study 
 
The experiment was designed to assess the strength of the association between 
serial reaction time performance and expressive grammar in children with and 
without DLD. Additionally, we aimed to replicate previous findings showing that 
children with DLD are less sensitive to structural regularities in the visuomotor 
domain as compared to their typically developing peers (see meta-analysis Lum 
et al., 2014). Therefore, we used a serial reaction time task design that is 
commonly used to assess the difference in performance between children with 
and without DLD. The task that we used was identical to the one used by Lum 
and Kidd (2012). Lum and Kidd did not compare serial reaction time task 
performance between children with and without DLD, but task designs similar to 
the setup of their task (see Introduction) have been used to assess the presence of 
a visuomotoric statistical learning deficit in children with DLD (Clark and Lum, 
2017; Conti-Ramsden et al. 2015; Hsu & Bishop, 2014a; Park et al., 2018).  
Unexpectedly, we observed that both groups of children were sensitive to the 
structural regularities, and we found no evidence for or against a difference in 
sensitivity between children with and without DLD. To evaluate whether this 
result is compatible with the standardized effect size for the DLD–typically-
developing difference reported in the meta-analysis by Lum et al. (2014), we 
computed the standardized effect size for our point estimate. This was done by 
dividing our point estimate (0.019) by the residual standard error of the model 
(0.86). The resulting standardized effect size (0.022) falls outside the 95% 
confidence interval of standardized effect sizes reported by Lum et al. (0.071 to 
0.584). The difference in point estimate standardized effect size between Lum et 
al. and the present study is 0.306 (0.328 − 0.022) and as the confidence interval 
for this difference, which ranges from 0.015 to 0.596, does not include zero, we 
conclude that our observed effect size is incompatible with the one reported in the 
meta-analysis by Lum et al. (for a computation of the confidence interval around 
the point estimate difference, see our OSF page: https://osf.io/e9w43/). 

We found no evidence for or against an association between serial 
reaction time task performance and sentence recall in children with and without 
DLD. In an attempt to explain these correlational results within the context of 
previous work on this topic, we noticed that there is no consensus on the existence 
and strength of the proposed association between serial reaction time performance 
and expressive grammatical proficiency in children with and without DLD: only 
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a small minority of studies report statistically significant correlations (see Figure 
6.5 later in this chapter). Also, the strength of the reported association in children 
with and without DLD varies across studies (see Introduction). In an attempt to 
put our result into perspective and to assess the existence of a potential publication 
bias, we decided to also conduct a meta-analysis on this topic. The meta-analysis 
is discussed in the following sections. Please note that the focus of this meta-
analysis is on the association between serial reaction time performance and 
expressive grammatical proficiency (rather than receptive grammatical 
proficiency).  
 
Study 2: Meta-analysis 
 
6.5 Methods meta-analysis 
 
We used the Preferred Reporting Items for Systematic Reviews and Meta-analysis 
statement to organize the current meta-analysis (Moher, Liberati, Tezlaff, Altman 
& The PRISMA Group, 2009). Effect size calculations and statistical analyses on 
the effect size measures were done in R (R Core Team, 2018).  
 
6.5.1 Literature search 
A first systematic search was conducted by the first author of this paper in 
February 2018. The search was conducted in five different sources: PubMed, 
PsycINFO, Education Resources Information Center (ERIC), Linguistics and 
Language Behavior Abstracts (LLBA) and Open Access Theses and Dissertations 
(OATD). In addition, the first author also contacted experts in the field (via the 
LINGUIST List and via the Cogdevsoc list) with requests for access to 
unpublished data. Altogether, this first search yielded 93 unique articles (91 hits 
via the databases and 2 hits via the mailing lists; Figure 6.3). A second search in 
PubMed, PsycINFO and OATD, which served as a reliability check, was done by 
a research assistant in September 2018. This second search yielded 13 additional 
potentially relevant unique articles that were not in the output of the first search. 
Finally, a third search was conducted by another research assistant in January 
2019. This third search was conducted as we realized that our initial query focused 
on studies that included people with DLD/specific language impairment and that 
therefore, we might have missed articles on serial reaction time task performance 
in typically developing children. This third search yielded 11 additional 
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potentially relevant unique articles. Thus, in total we screened 115 unique articles 
on their title and abstract. If, by screening the title and/or abstract, it became clear 
that the study did not meet the inclusion criteria for the meta-analysis (see 
Inclusion criteria and study selection), then the study was excluded. For 49 articles 
or datasets, we read the methods and result sections carefully in order to decide 
whether or not the study met the inclusion criteria. Eventually, 18 articles (15 
published articles, 1 preprint and 2 dissertations) met our inclusion criteria and 
were included in our database (see Sample description). See our OSF page for 
Excel spreadsheets with information on why studies were eventually included or 
excluded for analysis.  
 
6.5.2 Inclusion criteria and study selection 
Studies were eligible and included in our meta-analysis if they met all of the 
following criteria: 

1. The study involved the use of a serial reaction time task in the visuomotor 
domain, comprising nonverbal stimuli.  

2. The study reported on a measure of children’s grammatical proficiency, 
or it became clear that the authors had information on children’s 
grammatical proficiency.  

3. The study involved typically developing children and/or children with 
DLD (or specific language impairment) between four and twelve years 
old. Please note that for studies in which typically developing children 
were compared to a clinical population other than DLD (e.g., children 
with dyslexia, autism spectrum disorder, deaf children), we included only 
the results from the typically developing children. As the criteria for 
having DLD varied between studies, we decided that in order to be 
classified as DLD, the following criteria would have to be met: (a) 
children were identified as having DLD using scores on a (standardized) 
language test battery that differentiated between children with and 
without language impairment, that (b) the children with DLD and their 
typically developing peers were matched on nonverbal intelligence, and 
that (c) children had no history of neurological and/or emotional delay.  

4. Finally, for the present paper, we only included studies that were 
conducted before September 2018. Our database is community-
augmented, however, meaning that it is accessible online via our OSF 
project page and open to updates (Tsuji, Bergmann, & Cristia, 2014).  
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6.5.3 Sample description 
The final sample includes 54 effect sizes pertaining to correlations between an 
index of serial reaction time performance and grammatical proficiency. Twenty-
seven of these 54 effect sizes are correlations with an expressive grammar index. 
The other 27 effect sizes are correlations with a receptive grammar index. As our 
research question concerns expressive grammar only, we continue to describe 
only the dataset that includes correlations between serial reaction time task 
performance and expressive grammar (but see our OSF page for an exploratory 
analysis on the correlation with receptive grammar). 

After selecting and/or synthesizing effect sizes that came from the same 
sample of children (see Effect size computation and synthesized effect sizes), the 
final dataset contained 18 unique correlations between expressive grammar 
(indexed via a sentence recall or sentence completion task) and serial reaction 
time task performance (first-order conditional sequence: N = 12; second-order 
conditional: N = 6) in children with DLD (N = 8 effect sizes, 139 children with 
DLD) and in typically developing children (N = 10 effect sizes, 453 typically 
developing children).  

 
6.5.4 Effect size computation 
From each study, we extracted the relevant correlation coefficients. If needed, we 
synthesized effect sizes that came from the same sample of children (see 
Synthesized effect sizes). The extracted correlations were transformed into Fisher 
z correlations with their corresponding variances (Borenstein 2009, p. 42, 
Formula A and Formula B in appendix 6.2). All studies, except the study of Hani 
(2015), reported Pearson r correlations. The study by Hani (2015) reported a 
Kendall’s tau correlation and therefore we first transformed this correlation into 
Pearson r (Formula C, appendix 6.2) before transforming it into Fisher z. 
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Figure 6.3 Flowchart indicating data exclusion at each stage of the literature search 
procedure. SRT = serial reaction time task. 
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6.5.5 Synthesized effect sizes 
There were seven articles that reported multiple correlations between serial 
reaction time task performance and expressive grammatical proficiency in the 
same group of children. These multiple correlations were reported either because 
children performed multiple serial reaction time tasks at different timepoints, or 
because the authors obtained multiple measures of children’s expressive 
grammatical proficiency (e.g., children did both a sentence recall and a sentence 
formulation task). We cannot include correlations that come from the same group 
of children in one meta-analysis, as that would violate the assumption of 
independence. Therefore, we either selected (a) only one of the correlations 
reported or (b) we computed a synthesized effect size across the multiple 
correlations reported. We chose option (a) if the multiple correlations were 
reported for different timepoints, and option (b) if multiple measures of expressive 
grammar were reported. In the case of solution (a), we decided to select only the 
correlation reported for the child’s first serial reaction time task session (Gabriel, 
Stefaniek, Maillart, Schmitz, & Meulemans, 2012; Desmottes, Meulemans, & 
Maillart, 2016a, Desmottes, Maillart et al., 2017; West et al., 2017; 2018)12. In 
the case of solution (b), we computed a synthesized (combined) effect size, and 
its associated synthesized variance (formulas D and E; Borenstein 2009, p. 227; 
Desmottes et al., 2016a; Desmottes, Maillart et al., 2017; Park et al. 2018; Obeid, 
2017). The resulting synthesized effect sizes are reported in Table 6.3. The 
calculation of these synthesized effect sizes required knowledge of the correlation 
between the two measures of expressive grammar. For Park et al. (2018) and for 
Obeid (2017), we obtained these correlations from the authors. Unfortunately, we 
did not obtain this information for the Desmottes et al. (2016a) and Desmottes, 
Maillart, et al. (2017) papers. Therefore, we took these correlations from another 
paper by the same authors (Desmottes, Meulemans, & Maillart, 2016b) in which 
they did report the correlations, although for different samples of children.  
 
6.5.6 Data analysis and coding of moderator variables 
The main aim of the meta-analysis was to assess the strength of the relationship 
between serial reaction time task performance and expressive grammatical 
proficiency in primary-school-aged children. We set out to answer this 

                                                        
12Please note that we eventually decided to exclude Desmottes, Meulemans, Patinec, and 
Maillart (2017), because the authors reported a correlation for the third session only. 
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confirmatory research with a hierarchical meta-analytic random effects model 
(see rma.mv function from the metafor package, Version 2.0.0 in R, Viechtbauer, 
2010) in which we fitted the mean weighted correlation as a function of the binary 
moderator Group, with DLD coded as −"

#
 and with typically developing coded as 

+"
#
. The random-effects structure contained a random intercept for Paper (N = 

12). Simultaneously we also explored whether the mean weighted correlation is 
stronger in typically developing children than in children with DLD (as the 
declarative memory compensation hypothesis may predict; Ullman & Pullman, 
2015). A positive (and statistically different from zero) estimate for the predictor 
Group may be a preliminary indication that this hypothesis is true. 

In a secondary step, we explored whether the mean weighted correlation 
(when controlling for group status) varied by sequence type (first-order 
conditional versus second-order conditional) or Age. These exploratory analyses 
were conducted through model comparisons. Generally, if moderators affect the 
strength of the correlation, adding them to the model will result in better model 
fits. With the first model comparison, we compared the “Group-model” (as 
specified above) to the “Group-Sequence” model. In this Group-Sequence model, 
the effect size is fit as a function of the binary moderator Group, the binary 
moderator Sequence Type (with first-order conditional coded as +"

#
 and with 

second-order conditional coded as −"
#
) and the interaction between both 

moderators. The second model comparison compared the Group model to the 
“Group-Age” model in which the effect size is fitted as a function of the binary 
moderator Group, the continuous predictor Age in months (centered and scaled, 
ranging from −2.03 to +0.90) and the interaction between Group and Age. 
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6.7 Results of the Meta-Analysis 
 
6.7.1 Publication bias 
To assess the presence of a publication bias in the present meta-analysis, we 
analysed funnel plot asymmetry (Egger, Smith, Schneider and Minder, 1997) with 
a linear regression on our funnel plot (Figure 6.4). Visual inspection of our funnel 
plot suggests that the effect sizes are symmetrically distributed and therefore 
publication bias seems unlikely. Using the regtest function in the metafor package 
(Version 2.0.0) of the statistical programming language R (Viechtbauer, 2010), 
we found no evidence for or against funnel plot asymmetry (publication bias) in 
our sample (z = −1.67, p = .096). 
 

 
Figure 6.4 Funnel plot showing standard error of the effect size Fisher z as a function 
of the effect size. The vertical line indicates the mean weighted correlation. Dots in 
black are individual effect sizes from children with DLD, triangles in black represent 
individual effect sizes from typically developing children. The triangle-shaped 
unshaded region represents a pseudo confidence interval region with bounds equal to 
± 1.96 SE. 
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6.7.2 Confirmatory meta-Analysis 
The model outcome provided no evidence for or against a correlation between 
serial reaction time task performance and expressive grammatical proficiency in 
the pooled group of children (Fisher z = 0.13, SE = 0.084, z = 1.51, p = .13, 95% 
CI [−0.038, +0.29], Figure 6.5). For ease of interpretation, we also transformed 
the Fisher z estimate and its 95% confidence interval back into Pearson r values: 
the corresponding values are: r = .13, 95% CI [−.038,	+.28]. 
 
6.7.3 Exploratory analyses  
In addition to assessing the strength of the correlation between serial reaction time 
performance and expressive grammatical proficiency, we also explored whether 
the strength of this relationship differed between children with and without DLD. 
The model outcome of the predictor estimated that the strength of the relationship 
is stronger in typically developing children than in children with DLD. However, 
the estimate was not significantly different from zero (Fisher z = +0.11, SE = 
0.12, z = 0.89, p = .37, 95% CI [−0.13, +0.35]; Pearson r = +.11, 95% CI [−.13, 
+.34]). 

We also explored whether the mean weighted correlation between serial 
reaction time performance and expressive grammar, controlled for Group status 
(DLD versus typically developing) differed as a function of sequence type (first-
order condition versus second-order conditional) or age. Model comparisons 
revealed that we cannot conclude that this is the case. Neither the Group model 
versus Group–Sequence model comparison (p = .26) nor the Group model versus 
Group–Age model comparison (p = .20) was significantly different from zero.  
 



176   Chapter 6 
 

 
Figure 6.5 Forest plot showing overall and individual mean weighted effect sizes 
(Fisher z) and 95% confidence interval (CI), divided per participant group. The shaded 
diamonds represent the mean weighted effect size per group (DLD or typically 
developing). TD = typically developing; FOC = first-order conditional; SOC = 
second-order conditional. 
 
6.8 Discussion of the Meta-Analysis 
 
The present meta-analysis provided a quantitative overview of published and 
unpublished studies on the association between serial reaction time performance 
and expressive grammatical proficiency in children with and without DLD. 
Summarizing over 18 unique correlations that collectively examined 139 children 
with DLD (8 effect sizes) and 453 typically developing children (10 effect sizes), 
we found no evidence for or against the existence of an association between serial 
reaction time task performance and expressive grammatical proficiency in 
children with and without DLD. According to the declarative compensation 
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hypothesis, the investigated correlation may be smaller in children with DLD as 
compared to their typically developing peers, which may result in a weaker overall 
correlation in the pooled group of children. Therefore, we also assessed whether 
the mean weighted correlation is smaller in children with DLD than in typically 
developing children. The latter could not be concluded. In the General discussion 
we discuss some factors that may have contributed to these inconclusive results.  
  In the second part of our meta-analysis we further explored whether the 
strength of the proposed association differed as a function of sequence structure 
(first-order conditional versus second-order conditional) or age. We found no 
evidence, however, that these factors did or did not moderate the strength of the 
association.  
 
6.9 General discussion 
 
The main aim of the present study was to provide an in-depth overview and an 
evaluation of the relation between serial reaction time performance and expressive 
grammatical proficiency in children with and without DLD. In doing so, we first 
presented the results of our experimental study, which was a conceptual 
replication of previous work on the presence of a visuomotoric statistical learning 
deficit in children with DLD. Unexpectedly, we cannot conclude that we 
replicated (or did not replicate) previous work on this topic. We found no evidence 
for (or against) the existence of visuomotoric statistical learning deficit in children 
with DLD. We observed that both children with DLD and typically developing 
children learned the sequential structure, suggesting that also children with DLD 
are sensitive to sequential regularities in the visuomotor domain. Also, when using 
the size of the disruption peak as an individual measure of visuomotoric statistical 
learning, we found no evidence for or against an association between statistical 
learning and expressive grammatical proficiency in our sample of children with 
and without DLD.  

In an attempt to explain these null results, we realized that there was no 
clear consensus on (a) the existence and strength of the proposed association and 
(b) to what extent the relation is weaker in children with DLD than in typically 
developing children (as proposed, for example, by Ullman & Pullman, 2015). This 
motivated us to conduct the meta-analysis described in the second part of the 
paper. The outcomes provide no evidence for (or against) an association between 
serial reaction time performance and expressive grammar, nor evidence that the 
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strength of this association differs between children with DLD and without DLD. 
Also, our meta-analysis provided no evidence for the existence of a publication 
bias, and as a consequence we cannot conclude that the outcomes of the meta-
analysis are influenced (or not) by publication bias (note that a publication bias 
has been observed in the literature on statistical learning in children with dyslexia 
by Schmalz, Altoè, & Mulatti, 2017 and by van Witteloostuijn, Boersma, Wijnen, 
& Rispens, 2017). 

There are various factors that may have contributed to these inconclusive 
results. Firstly, they may be (partially) the result of psychometric shortcomings in 
the currently available measures to assess individual differences in statistical 
learning (Arnon, 2019; Siegelman, Bogaerts, & Frost, 2017; West et al., 2017). 
Secondly, studies on the relation between statistical learning and other cognitive 
processes often spend very little time discussing the theoretical motivation behind 
the selection of their tasks (as commented on by Siegelman, Bogaerts, 
Christiansen, & Frost, 2017). As a consequence, the sequential structure targeted 
in the statistical learning tasks is often only tangentially related to structure 
relevant for the linguistic ability that researchers try to predict with their task, let 
alone to how children acquire language in real life. In the set of studies that were 
included in our meta-analysis, we indeed observe that first-order conditional 
reaction time tasks and second-order conditional reaction time tasks, which 
clearly differ in their underlying sequential structure, are used to predict 
proficiency on the exact same grammar tasks.  

Furthermore, most of the grammar tasks assess children’s knowledge of 
a mixture of grammatical structures. The sentence recall task (Semel et al., 2010), 
for example, measures children’s knowledge of different sentence types (e.g. 
passives, declaratives, relative clause constructions), different morphosyntactic 
processes (subject–verb agreement, past-tense production, pluralization) and 
likely also other cognitive processes such as working memory (Frizelle, O’Neill, 
& Bishop, 2017). However, the pattern that needs to be learned in the serial 
reaction time task may not be relevant in predicting sensitivity to all these 
different sentence types and morphosyntactic constructions (Misyak & 
Christiansen, 2012; Wilson et al., 2018; Mimeau et al., 2016; Kidd & Arciuli, 
2016).  

Finally, there may also be a discrepancy in how acquired knowledge is 
measured in statistical learning tasks versus how acquired knowledge is measured 
in grammatical proficiency tasks. In the present sample of studies, the measures 
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used to assess visuomotoric statistical learning are all processing-based (i.e. based 
on response times), whereas the measures used to assess grammatical proficiency 
are all, except for Clark and Lum (2017), accuracy-based. Processing-based 
measures may be more sensitive to implicit knowledge representations, whereas 
accuracy-based measures may be more sensitive to explicit knowledge 
representations (Franco, Eberlen, Destrebecqz, Cleeremans, & Bertels, 2015; 
Misyak et al., 2010; Isbilen, McCauley, Kidd, & Christiansen, 2017). This 
discrepancy may complicate the detection of an association between the two 
cognitive systems.  
 
6.10 Conclusion 
 
Neither our own experiment nor our meta-analysis provides any evidence for the 
existence of an association between serial reaction time performance and 
expressive grammatical proficiency in children with and without DLD. The 
confidence interval of the meta-analysis (Pearson r from −.038, to +.28) is 
compatible with a nonexistent association, but also with a medium-sized 
association. We speculate that such an association may exist only if (a) the 
targeted structure in the statistical learning task is meaningfully related to the 
target structure in the grammatical proficiency task and (b) both measures 
represent the same represent the same response type of the participant. Overall, it 
is even well possible that visuomotoric statistical learning is associated with 
expressive grammar but that we encountered methodological problems in its 
detection. Taken together, we cannot claim yet that a visuomotoric statistical 
learning deficit is or is not associated with the language problems observed in 
children with DLD.  
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Chapter 7 
7.1 General discussion 
 
Children differ in the (apparent) ease with which they acquire language. The 
studies in this dissertation investigated whether this difference in ease of language 
acquisition correlates with children’s sensitivity to statistical regularities in the 
input.  More specifically, we investigated (1) whether we could detect differences 
in sensitivity to statistical regularities at the group and individual level (this 
concerns the measurement of statistical learning), (2) whether individual 
differences in statistical learning ability correlated with language proficiency and 
(3) whether the problems observed in children with Developmental Language 
Disorder (DLD) can be explained by a statistical learning deficit that is observable 
across modalities (auditory, visual, visuomotor), domains (verbal, nonverbal) and 
dependency types to be learned (adjacent dependencies, nonadjacent 
dependencies, mixed adjacent and nonadjacent dependencies). This final chapter 
provides a summary and synthesis of the individual studies described in this 
dissertation. The chapter ends with some notes on the clinical relevance of this 
(type of) research. 
 
7.1.1 Summary of the findings 
The main aim of Chapter 2 was to provide a quantitative overview (meta-
analysis) of all auditory verbal statistical learning studies in people with and 
without DLD. This overview also provided an estimate of the mean weighted 
difference (effect size) in auditory verbal statistical learning performance between 
people with and without DLD. This estimate of the DLD–TD difference in 
auditory verbal statistical learning appeared to be moderate to large and the 
direction of the difference is compatible with the hypothesis that DLD is 
associated with an auditory verbal statistical learning deficit: on average people 
with DLD performed 0.54 standard deviations worse than people without DLD. 
We could not draw a conclusion about any modulation of the deficit by the 
linguistic level at which learning took place (word segmentation studies versus 
grammar learning studies) or the participants’ age. An additional benefit of the 
meta-analysis is that it provided a clear overview of (a) the measurement types 
that have been used to assess auditory verbal statistical learning and (b) the age 
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groups in which this type of statistical learning has been investigated. Notably, 
this overview revealed (a) that most studies on auditory verbal statistical learning 
used only offline measures (e.g., grammaticality judgments) of learning, and (b) 
that none of the included studies investigated nonadjacent dependency learning in 
primary school children. It thus remains to be seen if the observed DLD–TD 
difference can be replicated using online measures of learning and/or using 
nonadjacent dependencies in primary-school-aged children.  

The main aim of Chapter 3 was therefore to develop an online child-
friendly measure of nonadjacent dependency learning that can detect this type of 
learning in typically developing primary-school-aged children (aged between 5 
and 8 years old). Nonadjacent dependency learning is commonly assessed via 
offline grammaticality judgment measures. The use of such judgments may be 
problematic in primary-school-aged children as the ability to make a 
grammaticality judgment likely depends on metalinguistic awareness, an ability 
that children acquire relatively late. Also, offline measures reflect only the 
outcome of the learning process, disregarding information on children’s learning 
trajectory. Using our novel online measure, we showed a difference in children’s 
response times to structured items that were predictable (due to their being part of 
a nonadjacent dependency relation) and their response times to unstructured items 
that were unpredictable (henceforth this difference in response times is referred 
to as “disruption peak”). The results of our offline measure of nonadjacent 
dependency learning (grammaticality judgment) did not provide evidence for or 
against children’s learning of the dependencies. In the next section of this 
discussion (Measuring statistical learning) we discuss the use of online and offline 
measures of statistical learning. 

In Chapter 4 we investigated whether the size of the disruption peak (see 
Chapter 3) is smaller in children with DLD as compared to their typically 
developing peers. If so, this would be in agreement with the hypothesis that 
children with DLD between 8 and 12 years have an auditory verbal nonadjacent 
dependency learning deficit. We did observe that children with DLD had smaller 
disruption peaks than their typically developing peers. We could not detect 
children’s learning of the dependencies with our offline measure of learning. Also, 
we observed no evidence for or against an association between our online measure 
of nonadjacent dependency learning and grammatical proficiency, as measured 
with the sentence recall task and word structure task of the Clinical Evaluation of 
Language Fundamentals – Dutch version (CELF, Semel, Wiig, & Secord, 2010). 
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We did not assess the correlation between our offline measure of statistical 
learning and grammatical proficiency, as we did not detect learning with this 
offline measure. 

The main objective of Chapter 5 was to assess whether children with 
DLD have a visual nonverbal statistical learning deficit. Assuming that children 
with DLD have a statistical learning deficit that is independent of the modality 
and domain in which learning takes place, we hypothesized to observe such 
deficit. Furthermore, as in typically developing children it has been shown that 
visual statistical learning correlates with literacy performance, we were also 
interested to see whether individual differences in visual nonverbal statistical 
learning between children with DLD correlated with individual differences in 
literacy proficiency. Such an association may in part explain the individual 
differences in literacy performance among our children with DLD: approximately 
half of the children with DLD had difficulties reading and spelling. The visual 
nonverbal statistical learning task was set up such that differences in transitional 
probabilities indicated which three aliens formed a triplet (and thus always came 
together). If a child is sensitive to these differences in transitional probabilities, 
then s/he learns the triplet structure. Using offline measures of learning (triplet 
completion task and triplet recognition task) we found no evidence for or against 
a difference in learning between children with and without DLD. Interestingly, 
the offline measures provided evidence that children with DLD were sensitive to 
the triplet structure to be learned. Using online measures of learning, no learning 
effect was detected in children with and without DLD.  Finally, we found no 
evidence for (against) an association between visual nonverbal learning and 
literacy performance (one-minute word reading, Brus & Voeten, 1969; two-
minute pseudoword reading, van den Bos, Spelberg, Scheepstra, & de Vries, 
1994; spelling, Braams & de Vos, 2015) in children with DLD.  

In Chapter 6 we combined a conceptual replication (experimental study) 
with a meta-analysis to evaluate the evidence for the proposed association 
between children’s detection of sequential regularities in the nonverbal 
visuomotoric domain (serial reaction time task) and grammatical proficiency. 
With the replication study, we found no evidence for (or against) the existence of 
a visuomotoric statistical learning deficit in children with DLD. Using a meta-
analytic approach to further investigate the link between children’s performance 
on a serial reaction time task and grammatical proficiency, we found no evidence 
for (or against) the existence of such association.  
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7.1.2 Measuring statistical learning (aim 1) 
A recurring issue throughout the individual chapters of this dissertation is the 
sensitivity of the currently available measures of statistical learning at the group 
level and at the individual level. This section aims to synthesize the points raised 
concerning this topic as well as to evaluate our use of novel child-friendly 
measures (Chapters 3, 4 and 5) of statistical learning. As already discussed in 
Chapters 3 and 4, we conclude that the use of online measures of statistical 
learning in addition to the use of offline measures is an advancement, because the 
measurement types may tap into different kinds of knowledge representations. 
Batterink and Paller (2019), for example propose that statistical learning 
performance comprises at least two dissociable components: (1) perceptual 
binding and (2) subsequent memory storage and retrieval. Perceptual binding 
happens online while participants are exposed to the stimuli and can thus be best 
measured with online measures of learning. Offline measures of learning may be 
more sensitive to the second component (memory storage and retrieval) of 
statistical learning. Relatedly, it has also been proposed that online measures of 
statistical learning can be best described as processing-based measures of learning 
whereas the offline measures can be best described as reflection-based measures 
of learning (Isbilen, Frost, Monaghan, & Christiansen, 2018). 

At the group level, we detected statistical learning using an online 
measure of auditory verbal statistical learning (Chapters 3 and 4), offline 
measures of visual nonverbal statistical learning (Chapter 5) and an online 
measure of visuomotor nonverbal statistical learning (Chapter 6). Unique in this 
dissertation is that we have online measures for each of these three types of 
statistical learning. While the use of online measures is standard in serial reaction 
time studies (Chapter 6), the use of such measures is novel, especially with 
primary-school-aged children, in auditory nonadjacent dependency learning 
studies (Chapters 3 and 4) and visual statistical learning studies (Chapter 5, and 
see also van Witteloostuijn, Lammertink, Boersma, Wijnen and Rispens, 2019). 

As the use of online measures of statistical learning is relatively new, 
novel methods keep emerging. This is also why we used two different online 
measurement types in this dissertation.  In Chapter 5, children’s difference in 
response times between predictable and less predictable elements (“RT 
predictability advantage”) was taken as a measure of learning in the visual 
nonverbal task. The difference in children’s response times to unstructured trials 
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as compared to structured trials (“RT disruption peak”) functioned as a measure 
of learning in the auditory verbal task (Chapters 3 and 4) and the visuomotor 
nonverbal task (Chapter 5). Interestingly, we detected a learning effect in the tasks 
that used the disruption peak measure, but could not detect learning using the RT 
predictability advantage measure. From this observation, we speculate that the RT 
disruption measure may be more sensitive in its detection of statistical learning 
than the RT predictability advantage measure. This may be because the decrease 
in response time – as assessed with the RT predictability advantage measure – 
does not necessarily reflect statistical learning only: children may also become 
faster as a result of task adaptation or increasing familiarity with the stimuli 
(Karuza, Farmer, Fine, Smith, & Jaeger, 2014; Kidd & Kirjavainen, 2011; but see 
Kuppuraj, Duta, Thompson, & Bishop, 2018 for a potential solution to this 
problem). With this type of measure, it is therefore difficult to disentangle 
statistical learning from general effects of practice. However, it should be noted 
that we cannot conclude that this apparent difference in sensitivity between both 
measurement types is real, because we did (and could) not directly compare the 
outcomes of the three statistical learning tasks in one statistical model. 

Other than a difference in measurement sensitivity, the apparent 
difference may also be a side effect of differences in task design between the 
visual statistical learning task (RT predictability advantage measure) and the two 
tasks that used the RT disruption measure (auditory verbal statistical learning task; 
serial reaction time task). In all three tasks, we instructed children to respond as 
quickly as possible. However, the number of response options differed per task. 
In the visual task there was only one possible answer (the spacebar), the auditory 
task had two response options (green button or red button) and the visuomotor 
task had four response options (four locations on the screen). This also means that 
children’s responses in the visual task do not reflect accuracy, as there was no 
‘target’ answer. This is different from the auditory task and visuomotor task where 
children’s responses reflect accuracy. This difference makes that an incorrect 
answer has consequences in the latter two tasks, but not in the visual task. A 
consequence of this difference is that a predictive strategy, that is predicting or 
anticipating which button to press, may be more beneficial for the auditory and 
visuomotoric task than for the visual task. An incorrect answer has consequences 
in the first two tasks, but not in the visual task. This may mean that children may 
not have used a predictive strategy in the visual statistical learning task, which 
makes it then difficult to detect a corresponding “predictability advantage”. 
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Complementary to the online measures of statistical learning, our 
auditory nonadjacent dependency learning task (Chapters 3, 4) and our visual 
statistical learning task (Chapter 5) also assessed children’s sensitivity to structure 
with offline measures of learning. We did detect a learning effect using the offline 
measures of visual statistical learning. We could not detect a learning effect using 
the offline measures of auditory nonadjacent dependency learning. Again, as we 
did not compare sensitivity to the visual and auditory structures using offline 
measures in one statistical model, future work is needed to determine whether the 
measures indeed differ in their sensitivity to detect statistical learning. It may be 
remarkable in this context, however, that the offline measures of our visual 
statistical learning task followed recommendations given by Siegelman, Bogaerts 
and Frost (2017) to enhance their sensitivity. In these measures, we increased the 
number of test items and used different types of offline measures (triplet 
completion and triplet recognition; Chapter 5). We did, however, not implement 
these recommendations in the offline measure of our auditory nonadjacent 
dependency learning tasks (Chapters 3 and 4), which may have made the offline 
measures used in these chapters less sensitive than the offline measures used in 
the visual statistical learning task (Chapter 5).  

Another explanation for the apparent (but not confirmed) difference in 
learning effects detected in the two offline measures has to do with the type of 
acquired knowledge that offline measures of statistical learning are assumed to be 
sensitive to. It has been proposed that offline measures of statistical learning 
appeal to explicit or metalinguistic knowledge of the structure (Franco, Eberlen, 
Destrebecqz, Cleeremans, & Bertels, 2015). As discussed in Chapter 5, we have 
reasons to believe that, in comparison to other work on visual statistical learning 
in children with DLD (Noonan, 2018) and compared to our own auditory 
nonadjacent dependency learning task (Chapters 3 and 4), the set-up of our visual 
statistical learning task may have triggered a more explicit learning strategy. This 
is mostly because, in comparison to the other studies, the task instructions of our 
visual statistical learning task were explicit in telling the children that they should 
pay attention to the order in which the aliens appeared. Recently, Himberger, Finn 
and Honey (preprint) showed that, using offline measures of learning, adults’ 
performance on a visual statistical learning task improved when the adults 
received the explicit instruction to search for the regularities as compared to when 
they did not receive such explicit instruction. These results indicate that the 
explicitness of the instruction may impact learning and should be considered when 
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designing a statistical learning task. Again, we would like to stress that our 
reasoning is speculative and far from conclusive, particularly also because the 
effect of such explicit instructions to focus on structure in this type of tasks is 
likely to be different for adults than for children (if nothing else because children 
may not really understand the concept “structure” or “order” yet).  

In addition to investigating statistical learning at the group level, we also 
aimed to detect statistical learning at the individual level. To this end, we extracted 
individual measures of the online and offline measures that were described above 
(see Chapters 4, 5 and 6 for procedures). We needed these individual measures to 
assess the strength of the association between statistical learning and language 
proficiency, as discussed later on (see next section, aim 2). However, an 
association between individual measures of statistical learning and language 
proficiency can only be detected with high between-subject variability in both 
measures. This is in conflict with our aim to detect group level differences, 
because in order to detect differences at the group level, the between subject 
variability should be low (Hedge, Powell, & Summer, 2017 and see Siegelman, 
Bogaerts, & Frost, 2017; West, Vadillo, Shanks, & Hulme, 2017 for similar 
conclusions within the statistical learning literature). This may be one of the 
reasons why we could not detect an association between statistical learning and 
linguistic proficiency in any of our individual studies (Chapters 4,5,6). That is, 
our individual measures of statistical learning may have been psychometrically 
weak in their assessment of learning. 

Alternatively, it may also be that we could not detect an association 
between our online measures of statistical learning and language proficiency, 
because of our assumptions on how individual sensitivity to regularities is 
expressed were incorrect. This is analogous to a point of contention in the infant 
literature where it is frequently doubted at what scale infants’ looking time or 
listening time preferences represent individual differences (Durrant, Jessop, 
Chang, Bidgood, Peter, Pine, & Rowland, preprint). Using the size of children’s 
disruption peak measure (or looking/listening time preference in the infant 
literature) we assume a linear relationship between the size of the disruption peak 
and the child’s sensitivity to the regularities. That is, a child with a disruption peak 
of 40 milliseconds is considered as being twice as sensitive to the regularities than 
a child with a disruption peak of 20 milliseconds. It is questionable, however, if 
such numerical difference is meaningful at all. It could also be the case that a 
categorical distinction is more in place. Such categorical distinction requires a 
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certain threshold, for example if children have disruption peaks larger than 20 
milliseconds then they are sensitive to the regularities whereas children who have 
peaks smaller than 20 milliseconds may have not learned the regularities. It could 
be interesting for future work to investigate whether such a threshold can be 
determined and to simulate whether a child’s sensitivity to statistical regularities 
is best expressed in a linear or categorical way (for such a simulation on infant’s 
dynamic event understanding see Durrant et al., preprint).  
 
7.1.3 Statistical learning and language proficiency (aim 2) 
The second aim of this dissertation was to assess the association between 
statistical learning, grammar and literacy proficiency in children with and without 
DLD. In Chapters 4 and 5, this assessment was secondary to the assessment of the 
deficit itself (and thus exploratory). In Chapter 6 the assessment of this association 
was part of our confirmatory analysis. Unfortunately, the outcomes of both 
exploratory analyses and the confirmatory analysis are inconclusive. This may 
mean that the association may be weak or nonexistent (Chapters 4, 5 and 6), but 
also that the association does exist and may even be strong (Chapter 6). In Chapter 
6 and the section above, we already introduced several methodological issues that 
may have hampered the detection of the hypothesized association. We concluded 
(1) that the measures of statistical learning may be psychometrically weak in their 
assessment of individual differences as they are designed to detect differences at 
the group level and (2) that the assumption of a linear relationship between 
children’s size of the disruption peak (or scores at the offline test) and their 
sensitivity to statistical structures may be invalid. Besides these methodological 
issues, we also speculated (Chapter 6) that the a-specific nature of our language 
proficiency measures may have hampered the detection of the proposed 
association. That is, the targeted structure in the statistical learning task may not 
have been related to the (various) targeted structure(s) in the language proficiency 
tasks (also commented on in Siegelman, Bogaerts, Christiansen, & Frost, 2017). 
Following the predictions of general statistical learning accounts, one would 
expect associations between statistical learning and measures of language 
proficiency to be independent from the structures used. Therefore, if it is true that 
associations between statistical learning and language only exist when the 
targeted structures in both tasks are similar then this poses a problem for general 
accounts of statistical learning.  
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In addition to the outcomes of our individual studies on the association 
between statistical learning and language proficiency, we also reported the 
outcomes of a meta-analysis that analysed the outcomes of different studies on 
the serial reaction time – grammatical proficiency association (Chapter 6). One 
advantage of such a meta-analytic approach is that it allows for the identification 
of moderators of the effect that may be difficult to assess with one single study. 
In our particular case, the individual studies that were included in the meta-
analysis covered a range of different ages (children between seven and twelve 
years of age), the use of different sequence structures (first-order conditional and 
second-order conditional) as well as two different populations (children with and 
without DLD). This allowed us to explore whether any of these moderators 
influenced the strength of the serial reaction time – grammatical proficiency 
association. The results of the analyses were inconclusive and thus we could not 
draw a conclusion about any modulation of the association by participants’ age, 
sequence type or population.  
 
7.1.4 A statistical learning deficit in children with DLD (aim 3) 
The experimental studies described in Chapters 4, 5 and 6 assessed the existence 
and size of a statistical learning deficit in primary-school-aged children with DLD 
across three different paradigms. As summarized at the start of this chapter, we 
observed a DLD–TD difference on the auditory verbal nonadjacent dependency 
learning task (Chapter 4). This difference led to the conclusion that children with 
DLD have an auditory verbal statistical learning deficit. We could not conclude 
that children with DLD have a statistical learning deficit outside the auditory 
verbal domain: the results of Chapters 5 and 6 provided no evidence for or against 
a visual nonverbal statistical learning deficit (Chapter 5) or a visuomotor 
nonverbal statistical learning deficit (Chapter 6). In these latter two chapters it 
was observed that, when using an offline measure of learning (Chapter 5) and 
when using an online measure of learning (Chapter 6), children with DLD were 
sensitive to the to-be-learned structures they had been exposed to. Although it is 
appealing to conclude that this pattern of results shows that the deficit is restricted 
to the auditory verbal domain, such a conclusion is premature, as we cannot 
directly compare the outcomes of the three individual studies. All three statistical 
learning tasks targeted a different sequential structure, that is the auditory task 
targeted nonadjacent dependencies, the visual task targeted adjacent 
dependencies, and the visuomotoric task targeted a fixed sequence comprising 
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both adjacent and nonadjacent dependencies. This use of different sequential 
structures impedes a comparison across the studies, as recent work suggests that 
the specific structure to be learned may impacts its learnability. For example, the 
detection of nonadjacent dependencies is thought to be more cognitively 
demanding than the detection of adjacent dependencies (Wilson et al., 2018) and 
may also result in more explicit knowledge representations (Romberg and 
Saffran, 2013). This means that if one wants to draw any conclusions on the 
domain-, or modality-specific constraints of the statistical learning deficit, one 
should keep the targeted structure constant. For example, future studies could 
compare our auditory nonadjacent dependency learning task (Chapters 3 and 4) 
to a visual linguistic nonadjacent dependency learning task as described in Karuza 
et al. (2014). 

Another reason that makes it difficult to disentangle modality specific 
effects from domain specific effects on the presence and size of a statistical 
learning deficit in children with DLD is that only our auditory task included 
linguistic stimuli, while both non-auditory tasks used nonverbal stimuli. In 
hindsight we realize that it is therefore difficult to rule out the possibility that 
rather than an auditory verbal statistical learning deficit, the DLD–TD difference 
observed in Chapter 4 is the result of an auditory processing difficulty (Tallal, 
2000) or reduced linguistic entrenchment (Siegelman, Bogaerts, Elazar, Arciuli, 
& Frost, 2018) in children with DLD as compared to their typically developing 
peers. This issue may be resolved by future studies in which statistical learning in 
children with and without DLD is compared across four different tasks: (a) an 
auditory verbal statistical learning task, (b) an auditory nonverbal statistical 
learning task, (c) a non-auditory verbal statistical learning task and (d) a non-
auditory nonverbal statistical learning task (see Evans, Saffran and Robbe-Torres, 
2009 or Noonan, 2018 for other combinations of statistical learning task 
comparisons in people with and without DLD). 

Part of the explanatory power of the statistical learning deficit hypothesis 
lies in its assumed multi-component nature. It has been hypothesized that 
successful statistical learning depends on other cognitive capacities such as 
processing speed, various forms of attention and different types of memory 
(Arciuli, 2018). There is some evidence, for example, that learning rules from 
speech is a two-stage process: after statistical regularities have been detected, 
learning shifts towards a more goal-directed attentional stage. In this second stage, 
learners integrate what is learned and when is learned in a goal-directed manner, 
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which in turn facilitates generalization of the rules (Orpella et al., 2019). Most 
children with DLD have reduced processing speed, working memory skills and 
attention skills as compared to their typically developing peers. Therefore, the 
statistical learning deficit hypothesis fits well with the heterogeneous profile of 
problems observed in these children. In a laboratory setting, however, one may 
aim for a pure measure of children’s sensitivity to regularities and therefore decide 
to control for any group differences in the cognitive areas that may support 
statistical learning. This was also the reason that we controlled for verbal working 
and verbal short-term memory in Chapter 4. In hindsight one may wonder whether 
controlling for these memory types hampers the ecological validity and 
generalizability of the outcomes and it could potentially explain why the size of 
our auditory verbal statistical learning deficit (Chapter 4) is relatively small in 
comparison to other statistical learning studies in the auditory verbal domain 
(Chapter 2). Most studies included in the meta-analysis (Chapter 2) did not control 
for potential other cognitive processes that may have had an impact on the size of 
the statistical learning deficit. 

One of the advantages of our meta-analysis (Chapter 2) on the auditory 
verbal statistical learning deficit in DLD is that we obtained an estimate of the 
size of the auditory verbal statistical learning deficit in people with DLD and that 
we could thus interpret the outcomes of our individual studies in light of this effect 
size. The estimate of our point estimate of standardized effect size for the between 
group difference on our online measure of auditory verbal statistical learning is 
0.23. The point estimate of this difference on our visuomotor statistical learning 
task is 0.022. Both these estimates are smaller than the lower bound of the 
confidence interval for the mean weighted effect size, which is 0.36 (across 10 
studies) reported in Chapter 2. This means that our observed DLD–TD differences 
are relatively small. Interestingly, all studies, except one, that were included in 
the meta-analysis reported in Chapter 2, used only offline measures of statistical 
learning. As the use of online measures of statistical learning is becoming more 
common it would be interesting to have more studies with online measures of a 
DLD–TD difference. These studies could then be added to our meta-analysis (as 
our meta-analysis is community-augmented and thus open to updates, see Chapter 
2 for details) and in the future we can then assess whether the size of the deficit is 
modulated by measurement type (offline versus online measure). Note that we did 
not discuss the DLD–TD differences of our offline measures of visual nonverbal 
statistical learning. This is because we interpreted these differences in terms of 
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odds ratio effect sizes and as yet, there is no general consensus on how to interpret 
the magnitude of odds ratio effect sizes (but see Chen, Cohen and Chen, 2010). 
Also, it may be good to note that we do not interpret the effect sizes of our DLD–
TD difference for our offline measures of auditory verbal statistical learning 
(Chapter 4) and our online measures of visual nonverbal statistical learning 
(Chapter 5). This is because we did not detect learning with these measures.  
 
7.1.5 Clinical implications 
In the long run, research into the role of more general cognitive processes, such 
as statistical learning, that are thought to be associated with language proficiency, 
may have value in the context of diagnosing and treating DLD. It has been 
suggested that training of such cognitive processes contributes to the success of 
language treatment programs in children with developmental language problems 
(Montgomery, Magimairaj, & Finney, 2010; Plante & Gómez, 2018).  

The small magnitude of our observed auditory verbal statistical learning 
deficit (Chapter 4) together with the weak associations between statistical 
learning, grammatical proficiency (Chapter 4) and literacy (Chapter 5) suggest 
that interventions aimed at bolstering children’s statistical learning will have 
limited, if any, effects. As already concluded in Chapter 4, it may be more 
effective to focus on the training of other more general cognitive processes, such 
as phonological processing or working memory, that are potentially more strongly 
correlated to children’s language proficiency than statistical learning. For 
example, a meta-analysis on differences in nonword repetition between children 
with and without DLD reported that children with DLD performed on average 
1.27 standard deviations below children without DLD (Graf Estes, Evans and 
Else-Quest, 2007). 

This is not to say, however, that interventions for DLD should disregard the 
principles of statistical learning. Plante and Gómez (2018) explain that it is 
relatively easy to incorporate statistical learning principles into existing 
treatments for DLD.  Incorporation of these principles may lead to enhanced 
learning of morphological target structures in children with DLD (Plante et al., 
2014). The concrete example that Plante and Gómez (2018) describe is that if 
treatment aims at children’s correct use of the grammatical third person -s 
morpheme, then detection of the dependency between the subject and the -s 
morpheme is facilitated if the combination is used in different contexts, that is 
with many different verbs. In their intervention study, Plante et al. (2014) showed 
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that children with DLD who received treatment of a grammatical morpheme (e.g., 
third person -s) in a high variability context (24 unique verbs) produced more 
correct forms of the trained grammatical morpheme than children in a low 
variability context (12 unique verbs). 

In the context of more metalinguistic learning strategies, the detection of 
structure in children with DLD may benefit from the inclusion of visual cues that 
explicitly draw children’s attention to the underlying linguistic structure (e.g., 
Ebbels, 2007). Our observation that children with DLD were sensitive to structure 
in the visual task may indirectly support the use of such strategy. Note that we 
addressed none of the discussed clinical implications in the present dissertation, 
however. Therefore, more research is needed to confirm that indeed the 
acquisition of grammatical morphemes may benefit from the proposed strategies 
that aim to facilitate children’s detection of structure. 
 
7.2 Conclusion 
 
The discussion above made clear that the size of the statistical learning deficit in 
children with DLD as well as the strength of the association between statistical 
learning and language proficiency may depend on several factors, including but 
not restricted to the domain and modality in which learning takes place, the 
specific structure to be learned and the way in which statistical learning is 
measured. The quantitative overview on auditory verbal statistical learning 
(Chapter 2) and our experimental study on auditory verbal nonadjacent 
dependency learning (Chapter 4) show that people with DLD are less sensitive to 
regularities in the auditory verbal domain than people without DLD. We could 
not conclude that children with DLD have (or do not have) a statistical learning 
deficit outside this domain (Chapters 5 and 6) nor that statistical learning ability 
correlates or does not correlate with grammar and literacy proficiency (Chapters 
4, 5 and 6). Although tempting, it is premature to conclude from the present set 
of results that people with DLD have a statistical learning deficit that restricts 
itself to the auditory verbal domain. More research is needed to confirm that the 
observed difference between people with and without DLD in this domain is 
indeed the consequence of reduced statistical learning and not of deficiencies in 
other cognitive areas such as auditory processing or reduced linguistic 
entrenchment in people with DLD. This question may be answered if future 
studies adapt our novel online measure, that has been shown to reliably detect 
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children’s auditory verbal nonadjacent dependency learning (Chapters 3 and 4), 
to comparable tasks in the auditory nonverbal, visual linguistic and visual 
nonverbal domain.
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Epilogue 
 
The first time I read about the “word counting watch” in Dave Eggers’ novel The 
Circle (see Prologue), I was sceptical: part of the beauty of children’s first 
language acquisition process is that it happens in such a natural and uncontrolled 
way. After four years of study, I still believe that it should never be a goal to fully 
control, regulate and monitor this process. Nevertheless, a tool like Eggers’ watch 
may open new avenues in our possibilities to investigate the interaction between 
children’s natural language input and their cognitive capacity to process this input. 
Therefore, one of the things that I would really like to further investigate is 
whether children with DLD indeed benefit from language input that is delivered 
in a more controlled and structured way. In such context Eggers’ watch may have 
the potential to become a valuable tool for researchers and professionals working 
with children with DLD.
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Appendices Chapter 2  
A2.1: Details of all key words, Boolean operators and syntax 
used for the database searches 
 
Search strategy for Psychinfo and Eric 

((Specific language impairment or Specific Language Disorder or Speech disorder or Communication 

disorder or Communication delay or Communication impairment or Developmental language delay or 

Developmental language disorder or Developmental language impairment or Expressive language disorder 

or Language delay or Language disorder or Language impairment or mixed language disorder or receptive 

language disorder or Language-based learning disabilit* or Language Based Learning Disabilit* or 

Language disabled or Specific learning disorder or Learning disabilit*) and (Non-declarative learn* or Non 

declarative learn* or Nondeclarative learning or Procedural learn* or Implicit learn* or Procedural memory 

or Artificial grammar learn* or Artificial Grammar or Artificial language or Artificial synta* or Sequence 

learning or Sequenc* learn* or Statistical learn* or Probabilistic learn* or Non adjacent dependency 

learning or non adjacent dependencies or nonadjacent dependency learning or nonadjacent dependencies 

or adjacent dependency learn* or adjacent dependencies)).a 

 

Search strategy for Pubmed 

((“Specific language impairment”[Title/Abstract] OR “Specific Language Disorder”[Title/Abstract] OR 

“Speech disorder”[Title/Abstract] OR “Communication disorder”[Title/Abstract] OR “Communication 

delay”[Title/Abstract] OR “Communication impairment”[Title/Abstract] OR “Developmental language 

delay”[Title/Abstract] OR “Developmental language disorder”[Title/Abstract] OR “Developmental 

language impairment”[Title/Abstract] OR “Expressive language disorder”[Title/Abstract] OR “Language 

delay”[Title/Abstract] OR “Language disorder”[Title/Abstract] OR “Language 

impairment”[Title/Abstract] OR “mixed language disorder”[Title/Abstract] OR “receptive language 

disorder”[Title/Abstract] OR “Language-based learning disabilit*”[Title/Abstract] OR “Language Based 

Learning Disabilit*”[Title/Abstract] OR “Language disabled”[Title/Abstract] OR “Specific learning 

disorder”[Title/Abstract] OR “Learning disabilit*”[Title/Abstract])) AND (“Non-declarative 

learn*”[Title/Abstract] OR “Non declarative learn*”[Title/Abstract] OR “Nondeclarative 

learning”[Title/Abstract] OR “Procedural learn*”[Title/Abstract] OR “Implicit learn*”[Title/Abstract] OR 

“Procedural memory”[Title/Abstract] OR “Artificial grammar learn*”[Title/Abstract] OR “Artificial 

Grammar”[Title/Abstract] OR “Artificial language”[Title/Abstract] OR “Artificial synta*”[Title/Abstract] 

OR “Sequence learning”[Title/Abstract] OR “Sequenc* learn*”[Title/Abstract] OR “Statistical 

learn*”[Title/Abstract] OR “Probabilistic learn*”[Title/Abstract] OR “Non adjacent dependency 

learning”[Title/Abstract] OR “non adjacent dependencies”[Title/Abstract] OR “nonadjacent dependency 
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learning”[Title/Abstract] OR “nonadjacent dependencies”[Title/Abstract] OR “adjacent dependency 

learn*”[Title/Abstract] OR “adjacent dependencies”[Title/Abstract]) 

 

Search strategy for Language Behavioural abstracts (LLB) 

ab(Specific language impairment OR Specific Language Disorder OR Speech disorder OR Communication 

disorder OR Communication delay OR Communication impairment OR Developmental language delay 

OR Developmental language disorder OR Developmental language impairment OR Expressive language 

disorder OR Language delay OR Language disorder OR Language impairment OR mixed language 

disorder OR receptive language disorder OR Language-based learning disability OR Language Based 

Learning Disability OR Language disabled OR Specific learning disorder OR Learning disability) AND 

ab(Non-declarative learning OR Non declarative learning OR Procedural learning OR Implicit learning OR 

Procedural memory OR Artificial grammar learning OR Artificial Grammar OR Artificial language OR 

Artificial syntax OR Sequence learning OR Sequenced learning OR  Statistical learning OR Probabilistic 

learning OR Non adjacent dependency learning OR non adjacent dependencies OR nonadjacent 

dependency learning OR nonadjacent dependencies OR adjacent dependency learn* OR adjacent 

dependencies) 

 

Search strategy for Open Access Thesis and Dissertations (OATD)  

abstract:(("Non-declarative learning" OR "Non declarative learning" OR "Procedural learning" OR 

"Implicit learning" OR "Procedural memory" OR "Artificial grammar learning" OR "Artificial Grammar" 

OR "Artificial language" OR "Artificial syntax" OR "Sequence learning" OR "Sequenced learning" OR 

"Statistical learning" OR "Probabilistic learning" OR "Non adjacent dependency learning" OR "non 

adjacent dependencies" OR "nonadjacent dependency learning" OR "nonadjacent dependencies" OR 

"adjacent dependency learning" OR "adjacent dependencies") AND abstract:( "Specific language 

impairment" OR "Specific Language Disorder" OR "Speech disorder" OR "Communication disorder" OR 

"Communication delay" OR "Communication impairment" OR "Developmental language delay" OR 

"Developmental language disorder" OR "Developmental language impairment" OR "Expressive language 

disorder" OR "Language delay" OR "Language disorder" OR "Language impairment" OR "mixed language 

disorder" OR "receptive language disorder" OR "Language-based learning disability" OR "Language Based 

Learning Disability" OR "Language disabled" OR "Specific learning disorder" OR "Learning disability")) 
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A2.2: Formulae used 

 

 A) Independent groups: Means 
and SD for SLI and Controls 

available  
(N= 7) 

B) Independent groups:  
t-statistic or  

F-statistic (between 
subjects) available (N= 3) 
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SMD =
XSLI− XControl

SDpooled

SDpooled =
(NSLI  −1)SDSLI

2 + (NControl  −1)SDControl
2

NSLI  +  NControl − 2

SMD = t (NSLI + NControl)
NSLINControl

SMD =
F(NSLI + NControl)
NSLINControl

var(SMD) = NSLI + NControl

NSLINControl
+

SMD2

2(NSLI + NControl)

J =1− 3
4df −1

g = J *SMD

var(g) = J 2 *var(SMD)

Weight = 1
var(g)
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Appendix Chapter 4 
A4: Operationalization of the model predictors 
 

Predictor Sum-to-zero contrasts Operationalization 
Intercept  
(online measure) 

 Average normalized response 
time 

   
DisruptionPeak 
(online measure) 

Disruption block: +#
&
 

Third training block: −"
&
 

Recovery block: −"
&
 

Difference in normalized response 
time between disruption block 
and combined third training block 
and recovery block  
 

PrePostDisruption 
(online measure) 

Disruption block: 0 
Third training block: −"

#
 

Recovery block: +"
#
 

Difference in normalized response 
time between third training block 
and recovery block 
 
 

Targetness  
(online measure) 

NonTarget: − "
#
 

Target: +"
#
 

Difference in normalized response 
times between nontargets and 
targets 
 

ExpVersion 
(online + offline 
measures) 

Version 1: −"
#
 

Version 2: +"
#
 

Difference in normalized response 
times/odd ratio between 
experiment version 1 (target = lut) 
and experiment version 2 (target 
= mip) 
 

Group  
(online + offline 
measures) 

DLD: −"
#
 

TD: +"
#
 

Difference in normalized response 
time/odds ratui between children 
with DLD and typically 
developing children  
 

Intercept  
(offline measure) 

 Yes bias: difference in odds ratio 
between children’s yes responses 
and their no responses. 

   
 (Table continues) 
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Operationalization of the model predictors (Continued) 
Rule  
(offline measure) 

NAD rule: + "
#
 

Violation rule: −"
#
 

Difference in odds ratio between 
items that follow the rule and 
items that violate the rule 
 

Generalization 
(offline measure) 

Familiar: +"
#
 

Novel: −"
#
 

Difference in odds ratio between 
items with familiar X-elements 
and items with novel X-elements 

Note. DLD = developmental language disorder. TD = typically developing. 
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Appendices Chapter 5 
A5.1: Visual statistical learning task instructions 
 
Instructions online self-paced familiarization phase 
Dutch original: In dit spel staan aliens in de rij voor het ruimteschip. Ze willen 
graag naar huis. Kan jij helpen? Je ziet straks alle aliens die in de rij staan. Je 
ziet steeds één alien tegelijk. Stuur de alien naar huis door op de spatiebalk te 
drukken. Daarna zie je vanzelf de volgende alien in de rij. Probeer maar! 
English translation: In this game, aliens are lined up in front of the spaceship. 
They all want to go home, and it’s your task to help them. You will see all of the 
aliens standing in the line. You will see one alien at a time. Send the alien home 
by pressing the space bar. After pressing the space bar, you will automatically see 
the next alien standing in the line. Give it a try! 
 
Dutch original: Goed zo! Dat is makkelijk hè? In dit spel vinden sommige aliens 
elkaar heel leuk. Zij staan bij elkaar in de rij! Bekijk elke alien goed en kijk welke 
aliens bij elkaar in de rij staan. Ik stel je hier later nog wat vragen over, dus let 
heel goed op! We gaan even oefenen.  
English translation: Well done! Easy, isn’t it? In this game, some aliens really like 
each other. They stand together in line. Watch each alien closely and pay attention 
to the order of the aliens, because I will ask you some questions about this later 
on. We start with a practice. 
 
Dutch original: Goed gedaan! Soms zie je in dit spel dezelfde alien twee keer 
achter elkaar. Als je dat ziet, moet je de alien wegjagen. Dit doe je door hem aan 
te raken. Je kan gewoon met je vinger op het scherm drukken. 
English translation: Well done! In this game, sometimes the exact same alien 
appears two times in a row. If you see the exact same alien twice in a row, you 
have to scare the alien away. You can do this by touching him on the screen with 
your finger.  
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Dutch original: Dat ging goed! Ben je klaar om echt te beginnen? Vergeet niet 
om goed op de aliens te letten. Bekijk elke alien goed en kijk welke aliens bij 
elkaar in de rij staan. Hierover krijg je later nog wat vragen, dus let heel goed 
op! Als je een alien twee keer achter elkaar ziet, jaag hem dan weg! Daar gaan 
we, zet hem op! 
English translation: Well done! Are you ready for the real game? Don’t forget to 
watch each alien closely and to pay attention to the order of the aliens, because I 
will ask you some questions about this later on. Also, if you see the exact same 
alien twice in a row, scare the repeated alien away. Let’s go!  
 
Instructions for the offline pattern completion task  
Dutch original: Nu gaan we nog iets anders doen. Sommige aliens vonden elkaar 
heel leuk en stonden daarom bij elkaar in de rij. Als het goed is, heb jij hierop 
gelet! Daar krijg je nu een paar vragen over. Je ziet steeds bovenaan een plaatje 
met aliens die steeds bij elkaar stonden, maar… één van de aliens is weg! Jij moet 
kiezen welke alien op de plek van het vraagteken hoort. Je mag één van de drie 
aliens kiezen die onderaan staan. Welke alien stond steeds op de plek van het 
vraagteken? Als je het niet zeker weet, mag je raden.  
English translation: Now, we are up for something different. Some aliens really 
liked each other and stood in line together. Did you pay attention to this? You will 
now receive some questions about his. On the top of the screen, you will see a 
picture of aliens that stood together in line, but there is one missing alien {the 
missing alien is depicted by a question mark}. You have to decide which alien 
should replace the question mark. You may choose one of the three aliens that 
have appeared on the bottom of the screen. If you don’t know the answer, you 
may guess.  
 
Instructions for the Pattern recognition task  
Dutch original: Je ziet steeds twee plaatjes. Op allebei de plaatjes staat een 
groepje aliens. Een van deze plaatjes klopt: deze aliens stonden steeds bij elkaar 
in de rij, in dezelfde volgorde. Jij moet kiezen welke van de twee plaatjes klopt. 
Als je het niet zeker weet, mag je raden.  
English translation: Now, you will see pictures with two groups of aliens. One of 
the groups of aliens is correct: these aliens stood together in line, in the same 
order. You may decide which of the two groups of aliens is correct. If you don’t 
know the answer, you may guess.  
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A5.2: Visual statistical learning triplets 
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A5.3: Offline test items visual statistical learning task 
Overview of the test items (for order 2 of the experiment version with Triplets A and 
Triplets B). The correct answers are underscored and in bold. Each letter represents 
an individual alien. The question mark indicates the missing alien. 
 

Triplet completion task 
Item Triplet/pair to complete Answer options 
1 ?C BDK  
2 ?K IJA 
3 GH? DIL 
4 D?F GEB 
5 ?KL JCE 
6 ?BC GHA 
7 ?HI GLA 
8 K? HLI 
9 ?E JKD 
10 B? FCE 
11 A?C JBH 
12 G? KAH 
13 E? FGC 
14 H? IDL 
15 J?L EFK 
16 DE? CBF 

Triplet recognition task 
Item Triplets/pairs presented on 

the left side 
Triplets/pairs presented on 
the right side 

1 DEF  JBF  
2 BF  EF  
3 GK  HI 
4 KC  DE 
5 EF GK  
6 ABC DHL  
7 JBF  GHI 
8 AB DH  
9 JKL AEI  

(Overview offline test items continues) 
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Overview offline test items (continued) 
Triplet recognition task 

Items Triplets/pairs presented on 
the left side 

Triplets/pairs presented on 
the right side 

10 GKC  ABC 
11 EI  BC 
12 JK HL  
13 KC  KL 
14 HI HL  
15 GHI AEI  
16 BC BF  
17 DE AE  
18 JB  AB 
19 GH EI  
20 KL AE  
21 DH  GH 
22 JB  JK 
23 GKC  DEF 
24 DHL  JKL 
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Appendices Chapter 6  
A6.1: Details of all key words, Boolean operators and syntax 
used for the database searches 
 
Note that these are the search strategies of our latest search (January 2019) 
 
Search strategy for Psychinfo and Eric 

[Field 1]: (Children) OR (school) OR (*school*)  

AND [Field 2]: (Non-declarative learn*) OR (Non declarative learn*) OR (Nondeclarative learning) OR 

(Procedural learn*) OR (Implicit learn*) OR (Procedural memory) OR (Serial Reaction Time) OR (Serial 

Reaction Time Task) OR (Sequence learning) OR (Sequenc* learn*) OR  (Statistical learn*) OR 

(Probabilistic learn*) 

AND [Field 3]: (Grammar) OR (Grammatical skills) OR (Grammar*) OR (Grammatical abilities) OR 

(Grammatical abilit*) OR (Language skills) OR (Language skill) OR (Language) OR (Language abilit*) 

OR (Sentence repetition) OR (Sentence-picture match*) OR (Sentence picture match*) OR (TROG*) OR 

(Morphosynta*) OR (Morphosyntactic comprehension) OR (Morphology) OR (Morphological skills) OR 

(Morphological abilit*) OR (Sentence completion) OR (Sentence comprehension) OR (past tense) OR 

(past-tense) OR (Sentence production) OR (Action Picture Naming) OR (Picture naming) 

 

Search strategy for Pubmed 

[Field 1]: “children” OR “school” OR “*school*” 

AND [Field 2]: “Non-declarative learn*” OR “Non declarative learn*” OR “Nondeclarative learning” OR 

“Procedural learn*” OR “Implicit learn*” OR “Procedural memory” OR “Serial Reaction Time” OR “Serial 

Reaction Time Task” OR “Sequence learning” OR “Sequenc* learn*” OR  “Statistical learn*” OR 

“Probabilistic learn*” 

AND [Field 3]: “Grammar” OR “Grammatical skills” OR “Grammar*” OR “Grammatical abilities” OR 

“Grammatical abilit*” OR “Language skills” OR “Language skill” OR “Language” OR “Language abilit*” 

OR “Sentence repetition” OR “Sentence-picture match*” OR “Sentence picture match*” OR “TROG*” 

OR “Morphosynta*” OR “Morphosyntactic comprehension” OR “Morphology” OR “Morphological 

skills” OR “Morphological abilit*” OR “Sentence completion” OR “Sentence comprehension” OR “past 

tense” OR “past-tense” OR “Sentence production” OR “Action Picture Naming” OR “Picture naming”  

 

  



Appendices     233 
 

 
 
 
 
 
 
 

Search strategy for Linguistics and language behavioral abstracts 

[Field 1]: children OR school OR *school*  

AND [Field 2]: Non-declarative learn* OR Non declarative learn* OR Nondeclarative learning OR 

Procedural learn* OR Implicit learn* OR Procedural memory OR Serial Reaction Time OR Serial Reaction 

Time Task OR Sequence learning OR Sequenc* learn* OR Statistical learn* OR Probabilistic learn* 

AND [Field 3]: Grammar OR Grammatical skills OR Grammar* OR Grammatical abilities OR 

Grammatical abilit* OR Language skills OR Language skill OR Language OR Language abilit* OR 

Sentence repetition OR Sentence-picture match* OR Sentence picture match* OR TROG* OR 

Morphosynta* OR Morphosyntactic comprehension OR Morphology OR Morphological skills OR 

Morphological abilit* OR Sentence completion OR Sentence comprehension OR past tense OR past-tense 

OR Sentence production OR Action Picture Naming OR Picture naming 
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A6.2: Formulae used 

 
 

Formulas used to compute effect size information 

 

A. Pearson’s r into Fisher’s z: 

! = 1
2	ln (

1 + *
1 − *, 

 

B. Variance Fisher’s z  

-. =
1

/ − 3 

 

C. Kendaull’s tau (1) into Pearson’s r 
* = sin 456789 

 

D. Synthesized effect size  
 

:;<= =
1
2(:5 + :6) 

 
 
 
Y1 is outcome 1 (Pearson’s r between serial reaction time task index and expressive grammar 

index 1) and Y2 is outcome 2 (Pearson’s r between serial reaction time task index and 

expressive grammar index 2). 

 

E. Synthesized variance  
 

-< =
1
4A-<5 + -<6 + 2*B-C5 + B-C6D 

 
 
Where r is the Pearson correlation between children’s expressive grammar index 1 and 

expressive grammar index 2.  
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Summary in English 
Detecting patterns: Relating statistical learning to language 
proficiency in children with and without developmental 
language disorder 
 
Children differ in the (apparent) ease with which they acquire the sounds, word 
meanings and rules of their native language. Some children have so many 
difficulties acquiring language that it has significant impact on their social 
interactions and educational process. If there is no clear aetiology (e.g., hearing 
impairment, neurological deficit, deprivation of linguistic input or limited 
cognitive abilities) for the language difficulties observed, then a child is usually 
diagnosed with developmental language disorder (DLD). Despite large 
heterogeneity in the language difficulties observed among children with DLD, 
almost all children with DLD have problems acquiring grammar of their native 
language. Grammatical problems are therefore regarded as a clinical marker of 
the disorder. In addition to their language problems, children with DLD often 
exhibit deficits in other cognitive areas, such as verbal working memory, verbal 
short-term memory and attention as well. It is still an empirical question how the 
language problems in these children can be explained: are they the consequence 
of a language-specific deficit or do they result from deficits in other cognitive 
mechanisms that are presumably important for language learning? The research 
described in this book addresses the latter question. Specifically, the overall aim 
is to determine if the language problems observed in children with DLD may be 
the consequence of these children being less sensitive to rules, patterns and 
regularities in the environment than their typically developing peers. 
 Statistical patterns and distributions in (spoken) language reflect 
underlying phonological, morphological and syntactic structures. For example, in 
the English present tense, the third person pronoun he frequently co-occurs with 
verb-plus-[s] marking as in he eats, he talks, he walks. Children unconsciously 
detect such co-occurrences, which guides them in learning the “rules” or 
“patterns” of their language. Reduced sensitivity to such statistical regularities in 
the input may hinder the detection of rules and patterns, and as such a statistical 
learning deficit has been proposed to explain the difficulties that children with 
DLD have in acquiring the grammar of their language. The example above may 
suggest that the statistical learning mechanism concerns the detection of linguistic 
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regularities specifically. The latter is not necessarily the case, however. Structure 
is not unique to human language: other domains (such as music, bird song, or 
movement) are also organized in a structured way. Therefore, it has been 
hypothesized that humans have a statistical learning mechanism that operates 
independently of modality (visual, auditory, visuomotor) and domain (verbal, 
nonverbal). Therefore, people’s sensitivity to regularities in general may correlate 
with their language proficiency. That is, people who are relatively good at 
detecting all sorts of regularities in their environment are expected to have 
relatively high language proficiency.  

The present dissertation has three aims: first, the studies described in this 
booked aimed to contribute to the methodological debate on how to measure 
statistical learning. The second aim is to investigate whether individual 
differences in statistical learning correlate with language proficiency. Third, we 
investigated whether children with DLD have a general statistical learning deficit 
that may contribute to the language problems observed in these children. In what 
follows, a summary of our findings with respect to each of these three aims is 
provided. We start discussing the third aim.  

If children with DLD have a general statistical learning deficit, then one 
would expect to observe reduced sensitivity to regularities in these children as 
compared to their typically developing peers across domains and modalities. We 
compared the statistical learning ability of 37 children with DLD and 37 typically 
developing children (8-12 years old) on three different statistical learning tasks: 
an auditory verbal task (Chapter 4), a visual nonverbal task (Chapter 5) and a 
visuomotoric nonverbal task (Chapter 6).  

In the auditory verbal task (Chapter 4), we presented children with three-
word utterances of a miniature artificial language (e.g. tep wadim lut, sot kasi 
mip). Unbeknownst to the children, the first word of each utterance “predicted” 
the third word of the utterance. That is, tep and lut always went together and sot 
and mip always went together. While the children listened to these utterances, we 
asked them to press a green or red button. Which button colour they were 
supposed to press depended on the third word of the utterance. For example, we 
asked them to press the green button if the third word was lut and the red button 
if the third word was not lut. After a series of rule-blocks – blocks in which the 
first word of each utterance predicted the third word of the utterance – children 
were presented with utterances that did not follow the rules. The third word of 
these non-rule utterances was still lut or mip, but the first word had changed (e.g., 
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pif wadim lut). We reasoned that if children had learned the rule between the first 
and third word, then this would be visible in their response time pattern: their 
response times to the third word of utterances that followed the rule would be 
quicker than their response times to the third word of utterances that did not follow 
the rule. After all, if they had detected the dependency between the first word and 
third word of the utterances, they would be able to predict the third word of rule 
items upon hearing the first word, whereas such a prediction does not work for 
non-rule items. Comparing the response time patterns of children with DLD to 
children without DLD, we observed that typically developing children showed the 
expected pattern: they responded slower to non-rule items than to rule items. We 
found no evidence for such a difference in children with DLD. When comparing 
learning between with DLD and their typically developing peers, we found that 
the learning effect was smaller in children with DLD than in typically developing 
children. We concluded that children with DLD have an auditory verbal statistical 
learning deficit. However, we also observed that the deficit was small in size.    

In the visual nonverbal task (Chapter 5), we told children that they were 
going to play a game in which it was their task to send alien creatures back to their 
home planet. We instructed children that a couple of aliens stood behind each 
other in line, waiting to board a spaceship. The children would see one alien at a 
time and they could send the alien home by pressing the space bar. After they had 
pressed the space bar, the next alien in line appeared automatically. We also told 
the children that they had to pay attention to the order in which the aliens 
appeared, because later on, we would ask them some questions about this order. 
What the children did not know was that the aliens formed triplets: there were 
twelve different aliens and these were arranged in four groups of three aliens. 
Thus alien 1, alien 2 and alien 3 belonged together; alien 4, alien 5 and alien 6 
belonged together; alien 7, alien 8 and alien 9 belonged together, and alien 10, 
alien 11, and alien 12 belonged together. This also meant that alien 1 was always 
followed by alien 2 and that alien 2 was always followed by alien 3. That is, the 
transitional probability from alien 1 to alien 2 was 100%. Also, the transitional 
probability from alien 2 to alien 3 was 100%. However, the transitional 
probability from alien 3 to the next alien was lower, as alien 3 could be followed 
by the first alien of any of the three other triplets (i.e. alien 4, alien 7 or alien 10). 
Previous studies showed that that learners are sensitive to these differences in 
transitional probabilities and that they use them to distinguish high-probability 
sequences from low-probability sequences. The latter facilitates the learning of 
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triplets: the transitional probability between aliens that form a triplet is higher than 
the transitional probability between aliens that cross a triplet boundary. As for the 
auditory verbal task, we compared the learning of children with DLD to the 
learning of children without DLD. Interestingly, we observed that both groups of 
children learned which aliens belonged together. This outcome suggests that 
children with DLD are able to detect statistical regularities in the visual nonverbal 
domain. 

Finally, we assessed children’s sensitivity to sequenced patterns in the 
visuomotoric nonverbal domain (Chapter 6), using a serial reaction time task. 
Children were seated in front of a computer screen with a gamepad controller 
attached to it. A cartoon picture of a smiley appeared in one of four marked 
locations on the screen. We instructed children to press the corresponding button 
on the gamepad controller as quickly and accurately as possible. In the first four 
blocks and the final block of the experiment the appearances of the smiley 
followed a fixed sequence of 10 screen positions. In the fifth (pre-final) block, the 
fixed sequence was replaced by a random one. Similarly to the auditory verbal 
task, children’s response time patterns served as an index of learning: if children 
detect the sequence, then their response times in the sequenced blocks should be 
quicker than their response times in the random block. We observed the predicted 
difference in both groups of children. This suggests that both children with and 
without DLD learned the sequence in the visuomotor nonverbal domain.  

Taken together, we can only conclude that children with DLD performed 
differently from typically developing peers on the auditory verbal statistical 
learning task. In both non-auditory nonverbal statistical learning tasks we 
observed that children with DLD did detect the regularities. This pattern of results 
may suggest that the statistical learning deficit is restricted to the auditory verbal 
domain. However, more research is needed to confirm that the difference between 
children with DLD and typically developing children in this domain is indeed a 
consequence of reduced sensitivity to regularities and not a result of reduced 
linguistic entrenchment, or deficits in auditory processing in children with DLD 
as compared to typically developing children.  

The summary above described differences in statistical learning 
performance between children with and without DLD at the group level. We also 
investigated the correlation between an individual children’s statistical learning 
ability and individual measures of grammatical proficiency, reading proficiency 
and spelling proficiency. We predicted that children who are relatively good at 
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detecting the patterns, rules and regularities in our statistical learning tasks score 
also relatively high on our measures of language proficiency. However, we found 
no evidence for or against this hypothesis. In Chapter 4 we could not detect a 
correlation between children’s learning of the rules in the miniature artificial 
language and their (native language) grammatical proficiency. In Chapter 5 we 
found no evidence for or against a correlation between children’s learning of the 
alien triplets and their scores on reading and spelling tasks, and in Chapter 6 we 
found no evidence for or against a correlation between children’s learning of the 
smiley sequence and their scores on a grammatical proficiency task.  

One of the explanations for these inconclusive results on the association 
between statistical learning and language proficiency is that our measures of 
statistical learning were not good enough to measure statistical learning at the 
individual level. We are not the first to suggest this may be at stake. Within the 
field of statistical learning, other research groups raised their concerns on the 
sensitivity and reliability of the commonly used measures of statistical learning. 
Some groups came with recommendations to improve the sensitivity of the 
measures. The visual statistical learning task that we used in Chapter 5 
implemented some of these recommendations.  

Another methodological discussion in the statistical learning literature is 
whether statistical learning should be measured while people are learning (online 
measure) or after learning took place (offline measure). There is a rise in statistical 
learning tasks that use both online and offline measures of statistical learning. 
However, that the use of online measures is relatively new, is illustrated by the 
meta-analysis that we conducted at the start of this PhD project (Chapter 2). This 
overview shows that only one out of the ten included studies on auditory verbal 
statistical learning that we included in our quantitative overview used an online 
measure (event-related potentials) of learning. All other studies used only offline 
measures of learning. This observation was one of the reasons for us to develop a 
novel child-friendly online measure of auditory verbal statistical learning. In 
Chapter 3 we showed that this novel measure can be used to detect learning in 
primary-school-aged children between five and eight years old. In Chapter 4 we 
continued to use this measure to investigate differences in auditory verbal 
statistical learning between children with and without DLD (see above). As the 
use of online measures of statistical learning is relatively new, novel measures 
keep emerging. In Chapter 5 we therefore used a slightly different online measure 
of statistical learning. That is, in Chapters 4 and 6, we used the difference in 
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children’s response times to rule items (faster responses) versus nonrule items 
(slower responses) as an index of learning. In Chapter 5 we used the difference in 
children’s response times to predictable (faster responses) versus less predictable 
(slower responses) as an index of learning. However, using this slightly different 
measure, we could not detect learning in children with and without DLD. This 
shows that it is still an empirical question what, and under which conditions, is 
the best online measure of statistical learning. 

Having discussed the three main aims of this dissertation, we conclude 
that the presence of a statistical learning deficit in children with DLD as well as 
the strength of the correlation between children’s individual statistical learning 
ability and their language proficiency may depend on several factors, including 
but not restricted to the domain and modality in which learning is tested and the 
way in which statistical learning is measured. We concluded that children with 
DLD have an auditory verbal statistical learning deficit, but could not conclude 
that they have (or do not have) a statistical learning deficit outside this domain. 
More research is needed to confirm that the observed difference between children 
with and without DLD in the auditory verbal domain is indeed the consequence 
of reduced statistical learning and not of deficiencies in other cognitive areas such 
as auditory processing or reduced linguistic entrenchment in people with DLD. 
Though not investigated as such, our results may also be a preliminary indication 
that within a treatment context, interventions that aim to bolster children’s 
statistical learning may have limited, if any, effects. Therefore, it may be more 
effective to focus on the training of other aspects that are more strongly correlated 
to children’s language proficiency than statistical learning.
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Nederlandse samenvatting 
Het ontdekken van patronen: De relatie tussen statistisch 
leren en taalvaardigheid in kinderen met en zonder 
taalontwikkelingsstoornis 
 
Kinderen verschillen in het (ogenschijnlijke) gemak waarmee zij de klanken, 
woordbetekenissen en grammaticale regels van hun moedertaal leren. Sommige 
kinderen hebben zoveel moeite met het leren van taal dat het negatieve gevolgen 
heeft voor hun sociale interacties en schoolprestaties. Wanneer de problemen met 
het leren van taal geen duidelijke oorzaak hebben, zoals bijvoorbeeld 
gehoorverlies, een neurologische afwijking of een sterk verminderd taalaanbod, 
dan spreken we van een “taalontwikkelingsstoornis” (TOS). Naast problemen met 
taal hebben veel kinderen met TOS ook problemen met andere cognitieve 
vaardigheden, zoals werkgeheugen, aandacht en kortetermijngeheugen. Deze 
cognitieve vaardigheden zijn ook belangrijk voor het leren van taal. Het is daarom 
een empirische vraag of de taalproblemen bij kinderen met TOS het gevolg zijn 
van problemen in taalspecifieke leermechanismen of van problemen in bredere 
cognitieve leermechanismen. Een algemeen cognitief leermechanisme waarvan 
verondersteld wordt dat het belangrijk is voor taalontwikkeling, is statistisch 
leren. Een statistisch leermechanisme zou mensen in staat stellen regelmatigheden 
in hun omgeving te detecteren. Waarom dit belangrijk kan zijn voor 
taalontwikkeling leggen we hieronder uit.  

In iedere taal komen bepaalde elementen, zoals klanken, lettergrepen of 
morfemen, relatief vaak in bepaalde combinaties voor. Bijvoorbeeld, in het 
Nederlands worden de meeste werkwoorden (2e en 3e persoon) in de 
tegenwoordige tijd vervoegd als werkwoordstam + t (loopt, fietst, danst). Dit 
betekent dat de overgangswaarschijnlijkheid tussen enkelvoudige onderwerpen 
(hij, jij, Anna) en een werkwoordstam + t relatief hoog is (hij loopt, jij fietst, Anna 
danst). Steeds meer onderzoek laat zien dat kinderen gevoelig zijn voor dit soort 
statistische regelmatigheden en dat deze gevoeligheid kinderen helpt om 
onbewust de grammaticale regels van hun moedertaal te leren.  

Regelmatigheden komen niet alleen voor in menselijke taal. Ook in 
andere domeinen, zoals muziek, vogelzang en motoriek hebben een (statistische) 
structuur. Er wordt verondersteld dat mensen een algemeen, cognitief statistisch 
leermechanisme gebruiken om regelmatigheden in allerlei domeinen te 
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detecteren. Er wordt ook verondersteld dat dit algemene statistisch 
leermechanisme een rol speelt tijdens het leren van taal: mensen die 
regelmatigheden in hun omgeving relatief snel oppikken, zouden dan ook een 
relatief goede taalvaardigheid hebben. Tegelijkertijd betekent dit dat de 
taalproblemen zoals we die zien bij kinderen met TOS, deels verklaard zouden 
kunnen worden door een statistisch leerprobleem. Kinderen met TOS zouden 
minder gevoelig zijn voor regelmatigheden dan kinderen zonder TOS. 

Centraal in dit proefschrift staat de hierboven beschreven relatie tussen 
statistisch leren en taalvaardigheid. In verschillende studies is onderzocht of 
individuele verschillen in statistisch leren samenhangen met taalvaardigheid én of 
kinderen met TOS minder gevoelig zijn voor statistische regelmatigheden in hun 
omgeving dan kinderen zonder TOS. Daarnaast levert dit proefschrift ook een 
bijdrage aan het methodologisch debat rondom de manier waarop statistisch leren 
het beste gemeten kan worden.  

Als een algemeen statistisch leerprobleem bijdraagt aan de taalproblemen 
die we zien bij kinderen met TOS, dan verwachten we dat kinderen met TOS 
zwakker zijn voor het herkennen van regelmatigheden in verschillende soorten 
aanbod dan kinderen zonder TOS. Om deze verwachting te toetsen, onderzochten 
wij het statistisch leervermogen van 37 kinderen met TOS en 37 kinderen zonder 
TOS op drie verschillende statistisch leertaken: een auditieve talige taak 
(Hoofdstuk 4), een visuele niet-talige taak (Hoofdstuk 5) en een 
visueelmotorische niet-talige taak (Hoofdstuk 6). Alle kinderen waren tussen de 
8 en 12 jaar oud. 

In de auditieve talige taak (Hoofdstuk 4) luisterden de kinderen naar een 
niet bestaande taal. Deze niet bestaande taal bestond uit driewoordzinnen, zoals 
tep wadim lut en sot kasi mip. Zonder dat de kinderen het wisten zat er een regel 
verstopt in de taal: het eerste woord van de zin voorspelde het derde woord van 
de zin. Dus tep voorspelde lut en sot voorspelde mip. Terwijl de kinderen naar de 
niet bestaande taal luisterden vroegen wij ze op een groene of rode knop te 
drukken. Welke knop ingedrukt moest worden, was afhankelijk van het derde 
woord uit de zin. Bijvoorbeeld, kinderen moesten op de groene knop drukken 
wanneer het derde woordje lut was en op de rode knop wanneer het derde woord 
geen lut was. Kinderen luisterden eerst gedurende een aantal blokken naar zinnen 
die de tep-lut en sot-mip regel volgden. Vervolgens was er een blok waarin de 
regel doorbroken werd. Dit blok noemen we het disruptieblok. In het disruptieblok 
eindigden de zinnen nog steeds met lut of mip, maar was het eerste woord variabel 
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(dus bijvoorbeeld pif wadim lut en gak palti mip). Het idee hierachter is dat 
wanneer kinderen de regel geleerd hebben, ze in het disruptieblok langzamer op 
de groene of rode knop zullen drukken dan in de blokken waar de regel wel 
aanwezig is. In het disruptieblok voorspelt het eerste woord niet langer het derde 
woord, wat voor een langere reactietijd zorgt. Als we de patronen in reactietijd 
tussen kinderen met en zonder TOS vergelijken zien we dat het verschil in 
reactietijd tussen de regelblokken en het disruptieblok groter is bij kinderen 
zonder TOS dan bij kinderen met TOS. Kinderen zonder TOS drukken sneller 
voor zinnen die de regel volgen dan zinnen die de regel niet volgen. Bij kinderen 
met TOS vinden we geen bewijs voor zo’n verschil in reactietijd tussen regels en 
niet regels. We concluderen dat kinderen met TOS de regel minder goed hebben 
geleerd dan kinderen zonder TOS, en dus dat zij mogelijk een auditief talig 
statistisch leerprobleem hebben.  

In Hoofdstuk 5 beschrijven we het statistisch leren van kinderen met en 
zonder TOS op een visuele niet-talige taak. In deze taak kregen kinderen de 
opdracht om aliens naar huis te sturen. De aliens stonden achter elkaar in de rij te 
wachten op een ruimteschip en telkens wanneer het kind op de spatiebalk drukte, 
ging er een alien naar huis en verscheen de volgende alien uit de rij. We vertelden 
de kinderen dat ze goed moesten opletten in welke volgorde de aliens verschenen. 
De kinderen wisten niet dat er twaalf aliens waren, die telkens verschenen in 
groepjes van drie. Dus alien 1, alien 2 en alien 3 verschenen altijd na elkaar, alien 
4, alien 5 en alien 6 verschenen altijd na elkaar, alien 7, alien 8 en alien 9 
verschenen altijd na elkaar, en alien 10, alien 11 en alien 12 verschenen altijd na 
elkaar. We noemen deze groepjes van drie aliens triplets en er zijn dus vier 
alientriplets. Binnen zo’n triplet is de overgangswaarschijnlijk van de ene alien 
naar de volgende alien 100%, want na alien 1 volgt altijd alien 2 en na alien 2 
volgt altijd alien 3. De overgangswaarschijnlijkheid tussen triplets is lager, want 
alien 3 kan gevolgd worden door de eerste alien van een van de drie andere triplets 
(alien 4, alien 7 of alien 10). Als kinderen gevoelig zijn voor deze verschillen in 
overgangswaarschijnlijkheid, dan leren zij welke aliens bij elkaar horen en dus 
een triplet vormen. Aan het einde van de taak bleek dat zowel kinderen met TOS 
als kinderen zonder TOS de alien triplets herkenden. Dit betekent dat ook 
kinderen met TOS gevoelig zijn voor regelmatigheden in het visuele niet-talige 
domein.  

In Hoofdstuk 6 onderzochten we statistisch leren in het visueelmotorische 
niet-talige domein. Een taak die vaak gebruikt wordt om dit type statistisch leren 
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te onderzoeken is de serial reaction time taak. Tijdens deze taak verschijnt er 
herhaaldelijk een smiley, maar steeds op andere locaties. Er zijn vier mogelijke 
locaties op een computerscherm. Kinderen krijgen een gamepad controller met 
daarop vier knoppen die overeenkomen met de vier locaties op het scherm. Het is 
aan de kinderen om zo snel mogelijk op de knop te drukken die overeenkomt met 
de locatie op het scherm waar de smiley verschijnt. In de eerste vier blokken en 
het zesde (laatste) blok van het experiment verschijnt de smiley in een vaste 
volgorde van 10 locaties. De kinderen weten dit echter niet. In het vijfde 
(voorlaatste) blok verschijnt de smiley in een willekeurige volgorde. Net als bij 
de auditieve talige taak (zie boven) verwachten we een verschil in reactietijd voor 
smileys die volgens het patroon verschijnen ten opzichte van smileys die 
willekeurig verschijnen. Dit verschil in reactietijd werd gevonden voor zowel 
kinderen met TOS als kinderen zonder TOS. Alle kinderen drukten sneller op de 
knoppen wanneer de smiley volgens de vaste volgorde verscheen dan wanneer de 
smiley willekeurig verscheen. Dit betekent dat ook kinderen met TOS gevoelig 
zijn voor regelmatigheden in het visueelmotorische niet-talige domein.  

Aan de hand van de resultaten uit de Hoofdstukken 4, 5 en 6 concluderen 
we dat kinderen met TOS een auditief talig statistisch leerprobleem hebben. In het 
niet-talige domein zijn kinderen met TOS wel gevoelig voor regelmatigheden. In 
de algemene discussie van dit proefschrift (Hoofdstuk 7) nuanceren we onze 
conclusie: vervolgonderzoek moet uitwijzen of het verschil tussen kinderen met 
en zonder TOS op de auditieve talige taak inderdaad het gevolg is van een 
statistisch leerprobleem of dat het bijvoorbeeld samenhangt met problemen in de 
verwerking van auditieve of talige stimuli. 

De hierboven beschreven resultaten gaan over verschillen in statistisch 
leren op groepsniveau. Ook op individueel niveau hebben we de samenhang 
tussen statistisch leren en verschillende vormen van taalvaardigheid bestudeerd. 
Het was hierbij de verwachting dat kinderen die goed zijn in statistisch leren ook 
goed scoren op taken die taalvaardigheid meten (en vice versa). Onze resultaten 
kunnen deze hypothese niet bevestigen of verwerpen. In Hoofdstuk 4 vonden we 
geen bewijs voor (of tegen) een samenhang tussen het leren van regels in de niet-
bestaande taal en grammaticale vaardigheid. In Hoofdstuk 5 vonden we geen 
bewijs voor (of tegen) een samenhang tussen het herkennen van alien triplets en 
scores op lees, - en spellingtaken. Tot slot, in Hoofdstuk 6 vonden we geen bewijs 
voor (of tegen) een samenhang tussen scores op de serial reaction time taak en 
grammaticale vaardigheid.  
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Een van de mogelijke verklaringen voor het niet kunnen detecteren van 
correlaties (samenhang) tussen statistisch leren en taalvaardigheid op individueel 
niveau, is dat de bestaande statistisch leertaken niet gevoelig genoeg zijn om 
verschillen op individueel niveau waar te nemen. Binnen het onderzoeksveld van 
statistisch leren is dit een bekend probleem. De afgelopen jaren zijn er dan ook 
een aantal aanbevelingen gedaan die de bestaande taken gevoeliger zouden maken 
in het detecteren van individuele verschillen. In de visuele niet-talige taak die wij 
gebruikt hebben in Hoofdstuk 5 zijn een aantal van deze aanbevelingen verwerkt. 

Een andere methodologische discussie die gevoerd wordt binnen het 
statistisch leerveld is op welk moment leren het beste gemeten kan worden: terwijl 
kinderen leren (online maat) of achteraf (offline maat)? In het verleden werd 
alleen gebruikt gemaakt van offline maten, maar de laatste jaren is het steeds 
gebruikelijker om beide maten te combineren. Het gebruik van online statistisch 
leermaten is nog relatief nieuw. Als we bijvoorbeeld kijken naar de studies die 
meegenomen werden in onze meta-analyse over auditief talig statistisch leren bij 
mensen met en zonder TOS (Hoofdstuk 2), dan valt op dat er slechts 1 studie een 
online leermaat gebruikte. Dit was ook een van de redenen dat we besloten om 
een nieuwe kindvriendelijke online maat van auditief talig statistisch leren te 
ontwikkelen. In Hoofdstuk 3 laten we zien dat deze nieuwe online statistisch 
leermaat geschikt is om statistisch leren in kinderen tussen de 5 en 8 jaar oud te 
detecteren. In Hoofdstuk 4 gebruiken we deze nieuwe maat om statistisch leren te 
meten in kinderen met en zonder TOS.  

Samenvattend concluderen we dat het statistisch leerprobleem in 
kinderen met TOS en de samenhang tussen statistisch leren en taalvaardigheid 
afhankelijk is van verschillende factoren. Dit zijn onder andere het domein (talig 
of niet-talig) en de modaliteit (auditief, visueel, visueelmotorisch) waarin het 
leren plaatsvindt, alsook de manier waarop statistisch leren gemeten wordt. We 
vinden een verschil in statistisch leren tussen kinderen met en zonder TOS in onze 
auditieve, talige taak. In het visuele niet-talige domein en het visueelmotorische 
niet-talige domein zijn kinderen met TOS wel gevoelig voor regelmatigheden. In 
de context van taalinterventies en behandeling voor kinderen met TOS kan dit 
betekenen dat het trainen van statistisch leervaardigheden beperkt effect kan 
hebben op het verbeteren van de taalvaardigheid. Het kan dus effectiever zijn om 
binnen de behandelcontext te focussen op het verbeteren van andere cognitieve 
aspecten die sterker samenhangen met taalvaardigheid dan met statistisch leren. 
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