

A neural network for multi-modal category
formation in infants

Zackary Gibson
11576448

Bachelor Thesis - Linguistics
Supervised by Paul Boersma

2020

2

Introduction

Modelling experimental data and results with neural networks remains a relatively unexplored area of
linguistic research, and is a particularly attractive method for its biological plausibility. Some areas in
which neural networks have been applied successfully are in modeling auditory dispersion and category
formation (Boersma, Benders & Seinhorst, 2020). This paper will attempt to model results from Plunkett,
Hu, and Cohen (2008), which demonstrated that, for infants, category creation based on visual stimuli can
be disrupted in the presence of incongruous spoken labels. In their study, 10-month olds were presented
with line drawings (figure 1) of an imaginary creature with corresponding features in four of five
experiments; e.g. spread ears would predict a short tail and vice versa. This was the narrow condition, in
which the statistical distribution of the drawings led to the formation of two distinct categories of figures
by the infants, each with diametrically opposed features: 1111 and 5555. The narrow continuum invites
the participant to form two categories because the four leftmost drawings of figure 1’s narrow condition
each have bunched ears, large tails, long necks, and short legs which sits in contrast to the right four
figures, which tend to have longer legs, shorter necks, smaller tails, and spread ears. Category formation
was measured via the infants’ novel looking preference. The broad condition was used only in a single
experiment as a control. In the broad condition, the values of the legs and tail predicted opposing values
for the neck and ears. Likewise, neck and ear values predicted opposing leg and tail values. For example,
in the first figure of the broad condition, 1155, the values of 1 for the legs(1 = short legs) and tail (1= thin
tail) predict values of 5 for the neck (5 = long neck) and ears (5 = spread ears). This pattern of distribution
led the infants to form a single, general category: 3333, which can be observed by noting that there is less
consistency within the broad condition creatures than within the narrow condition creatures. When spoken
labels were introduced to the narrow condition stimuli, it had a disruptive and overriding effect on visual
category formation. When two spoken labels were congruous with the visual category cues, there was no
change in category formation. However, when a single spoken label was given for all figures, the infants
formed only a single category, as in the broad condition control experiment. When two labels were
assigned at random, no category formation occurred.

 Figure 1: Broad and narrow condition line drawings (Plunkett et al., 2008).

A bimodal, parallel, neural network would be needed to model the effect shown by Plunkett et al.

(2008). Similar models have already been constructed that can model the McGurk effect, which shows the

3

opposite effect: an overriding influence of the visual input over the audible input when presented
simultaneously (McGurk & MacDonald, 1976). At this point, there seems to be two dominant approaches
to bimodal modeling: Boltzmann machines and self-organizing map (SOM) networks.

SOM networks map inputs into two dimensional space without supervision based on patterns
found within the data. One such network constructed by Gustaffson, Jantvik & Paplinski (2014) generated
SOMs based on visual and auditory similarity of spoken segments. Video recordings of spoken segments
were grouped into equivalence classes before being mapped together onto a grid of nodes, the SOM —
three equivalence classes were created: labiodental, bilabial, and open mouth segments. The auditory cues
underwent a similar process, but similarity was determined by mel-frequency cepstrum measurements, a
measure of spectral power. The network itself featured parallel inputs for each modality which then fed
into an output. The output provided a partial input to the auditory modality via a feedback loop. When an
auditory /ba/ and visual /ga/ were supplied as inputs, /da/ was the likely bimodal winner due to its visual
similarity to /ga/ and its auditory similarity to /ba/, as indicated on the SOMs. This network was able to
reliably reproduce the McGurk effect from bimodal visual-audio inputs.

As a testament to the efficacy of the SOM approach, Plunkett et al. (2008) was successfully
modeled using two SOM networks (Gliozzi, V., Mayor, J., Hu, J., & Plunkett, K. 2008). In this follow-up
research, one of the networks had a single SOM that mapped both visual and audio cues; the other
network featured three SOMs: visual, acoustic, and bimodal. Infant looking time was realized as “a
function of the quantisation error.” Their models were able to recreate infant looking time for each of the
five experiments of Plunkett et al. (2008, p 401). Interestingly, the authors also note that after further
training the model with stimuli from experiment five (two visual categories and a single spoken label)
results in a transient effect: eventually the model rejects the label in favor of the two visual categories.
This has interesting implications for infants — they may exhibit similar transient categorization behavior.
Additionally, the shift in perception from single category to two categories could allow for their model to
represent hierarchies of categorization.

Another contemporary approach to neural modeling is to use a Boltzmann machine. Boltzmann
machines consist of layers of connected nodes whose activation probabilities are stochastically
determined by statistical distributions within the input data. Ngiam, Khosla, Kim, Nam, Lee, and Ng
(2011) demonstrate the usefulness of Boltzmann machines for modeling bimodal inputs. Using a
video-only auto-encoder consisting of input nodes, hidden layers, and a reconstructed output, they were
able to supply a visual input and reliably recreate both a visual and audio output. Their bimodal
auto-encoder worked similarly, except it could receive audio or visual data as inputs, but was somewhat
less reliable in its reconstructions. This model was also able to reproduce the McGurk effect. Visual /ga/
and auditory /ba/ inputs often resulted in the model perceiving /da/, despite /da/ not being in the input data
set. This study, and those following it, provide proof of concept that Boltzmann machines can model
bimodal inputs.

While Plunkett et. al (2008) has been modeled with a SOM network, it has not yet been modeled
with a Boltzmann machine. Thus, this study will attempt to construct a bimodal Boltzmann machine to
model the results of Plunkett et. al (2008). More specifically, a restricted deep Boltzmann machine will be
constructed based on a modified version of Boersma’s (2019) network for modeling emergent category
formation. As with that network, this too will be constructed with the speech processing and analysis
software Praat (Boersma & Weenink, 2020).

4

Methods
A three-layered network consisting of 42 input nodes, 50 intermediary nodes, and 40 output nodes was
constructed. Each node of the input layer, with its respective activation (xk, where x represents the activity
level and k is the index specifying an individual node), is connected to each node of the intermediate layer
(yl) by a weighted connection (ukl). Again, each intermediate layer node possesses an individual activation
level. The intermediate level is also connected (vlm) to each output layer node, again with every output
layer node having its own activity level (zm). The values of k, l, and m range from 1 to the number of
nodes in their respective level. Furthermore, each node layer has its own bias, represented by ak for the
input layer, bl for the middle layer, and cm for the output layer. A positive bias value adds to the activity
level of the affected node, increasing the likelihood of activation. Inversely, a negative bias is subtractive
and decreases the likelihood of activation. Node connections exist only between layers, and never within a
layer. The network is bidirectional — data moves between node layers; values in one layer will affect the
values of the other layers during the period between the initial input and the final output (Boersma, 2019).
Training the network occurs in four stages: initial settling, Hebbian learning, dreaming, and anti-Hebbian
learning.

 Figure 2: A visual representation of the entire network.

Initial settling
The activity of the middle layer (yl) is determined by holding the activities of the input (xk) and output
nodes (zm) constant, and allowing activities to spread to the middle layer. Here, k and m represent the
activation of a single node in the input and output respectively while K and M are the total number of
nodes in the input and output layers, 42 and 40 respectively. This is shown in the following equation. In
this instance, represents the standard logistic function, and the output of is a probability representing σ σ
the likelihood of node l being activated

After this, the network resonates until it reaches a near-final state. Resonation generates activation

values for every node in the output layer (zm) while still holding input layer activities (xk) constant. Here, l
represents the activation of a single node in the middle layer while L represents the total of the middle
layer nodes, 50.

5

This entire process of initial settling is repeated ten times to bring the network to a state of near

equilibrium (Boersma, 2019).

Hebbian Learning
In the Hebbian stage, biases (ak, bl, cm) and all existing connections between active nodes are strengthened
(ukl, vlm) to ensure that co-activated nodes associate with each other and fire together. Here, represents η
the learning rate of 0.001 (Boersma, 2019).

Dreaming
Next, the network stochastically generates patterns. During the initial settling phase, following a single
input into the input layer, an activity for the intermediate layer (yl) is calculated. Then yl is used to
calculate activities in the input layer (xk) Next, the output layer (zm) is stochastically determined. This
stochasticity is achieved through the use of a deviate of the random Bernoulli function (). Finally, the Ɓ
new activities of the input and output layers are used to stochastically recalculate the intermediate layer.
The dreaming sequence repeated ten times (Boersma, 2019).

Anti-Hebbian Learning
The anti-Hebbian stage weakens all connections and biases.

Once the network reaches a stable state, the connection weights and the biases for the input level

nodes are updated again in a second, identical anti-Hebbian stage (Boersma, 2019).

6

The Input Layer
The input layer was divided into four slabs of 10 consecutive nodes each to represent the visual inputs,
with the remaining two nodes representing the binary spoken labels. The first slab, nodes 1 through 10,
represent the legs of Plunkett et al.’s (2008) creatures. Nodes 1 and 2 correspond with Plunkett’s number
1, the shortest legs, nodes 3 and 4 correspond with number 2, for slightly less short legs, and so on until
nodes 9 and 10, which represent Plunket number 5 — the longest legs (fig. 1) . The mean values of the
input data were centered on two peaks: the first at node 2.5 and the second at node 8.5. A peak width of 3
nodes and a standard deviation of 1 node ensured that the first peak covered nodes 1 to 4, Plunkett’s
numbers 1 and 2. Likewise, the second peak was distributed over nodes 7 to 10, accounting for Plunkett’s
values of 4 and 5. This configuration of the distributional peaks allows the network to account for
variability of the input while still distinguishing between two groups necessary for category formation.
Each of the other three slabs featured identical architecture and accounted for the tails, neck, and ears of
the creature, with node numbers adjusted accordingly. A drawing of the first visual input slab is shown in
figure 3.

Figure 3: The first 10 visual input nodes of the network, representing the legs of Plunkett et al.’s (2008) creatures.

Nodes 41 and 42 represent the binary labels assigned to the creatures in experiments 3, 4, and 5 of
Plunket et al. (2008). When no labels are present, these nodes are not activated at all. In experiments
where labelling is present, they are activated with a greater activation strength than the nodes of the visual
input slabs to represent the dominating influence of the audible inputs over the visual inputs. Unlike in the
visual slabs, no input variability was present in the label nodes.

After the network has been trained on the input data, it is tested by passing a prototypical input in
sequence with small intervals through the entirety of the input layer, and allowing the network to
deterministically resonate. Then the state of the input layer is drawn. These drawings showing the end
state of the input layer are the network’s outputs.

7

Experiment 1: Broad condition
In the original experiment’s broad condition, a leg value of 1 or 2 would predict an ear value of 5 or 4
respectively. Inversely, an ear value of 1 or 2 would predict a respective leg value of 5 or 4. Thus, in the
network, the input activations in the leg and ear slabs were anti-correlated with each other for this
experiment. For each network input, a random selection is made between the low mean and the high mean
for the slab. If the low mean was chosen for the legs slab, then a high mean would be selected for the ears
slab. If the high leg mean was selected for the input, then a low mean input would be provided for the
ears. An identical relationship to the one just described exists between the tails and necks within the
original experiment, and the model. This relationship is illustrated in figure 4, which shows the four major
permutations of the input node layer for the broad condition stimuli. The two nodes representing spoken
labels were not used in this condition.

 Legs Tails Necks Ears Labels

Figure 4: The four major input permutations of the broad condition.

Experiment 2: Narrow condition
The narrow condition differs from the broad condition only in that all four visual input features are
correlated with one another. A randomly selected low mean input for the first slab, the legs, will lead to
low mean inputs for the ears, tails, and neck for that given learning cycle. An example, along with
potential input variability, is shown in figure 5. A randomly chosen high mean input for the legs slab will
deterministically result in all other visual input slabs having high mean inputs. See figure 6 for an
example. This mirrors the line drawings in figure 1, which led to the formation of two distinct categories
when the infants were presented with the narrow condition stimuli. There, each creature has feature values
that are either entirely low, 1 or 2, or entirely high, 3 or 4.

8

 Legs Tails Necks Ears Labels

Figure 5: Input layer activation patterns for the narrow condition’s first archetype. The three images show possible input
variability that could occur in three separate learning cycles.

 Legs Tails Necks Ears Labels

Figure 6: Input layer activation patterns for the narrow condition’s second archetype with examples of possible variability.

Experiment 3: Narrow condition with congruent labels
The visual inputs, represented by the first 40 nodes, were identical to experiment 2. Nodes 41 and 42, the
nodes representing the binary labels, were utilized in this experiment. The binary label nodes were
activated in the same correlational manner as the visual inputs in the narrow condition. If the lower mean
value was randomly selected for the leg slab, then node 41 was activated for that input (fig. 7).
Conversely, if the higher mean was selected for the leg slab, then node 42 was activated (fig. 8). In
simpler terms, when the network generated an input like that on the left side of the narrow condition
continuum (fig. 1), node 41 was activated. Node 42 was activated when the network generated an input
like that on the right half of figure 1’s narrow continuum. This mirrors Plunkett et al.’s (2008) experiment
where the spoken category labels given to the children corresponded with the visual categories that the
children formed on the basis of the stimuli (fig. 1).

 Legs Tails Necks Ears Labels

Figure 7: Possible input layer activation patterns for the narrow condition’s first archetype with a matching label.

9

 Legs Tails Necks Ears Labels

Figure 8: Possible input layer activation patterns for the narrow condition’s second archetype with a matching label.

Experiment 4: Narrow condition with a single label
In experiment 4, label node 41 was activated for every input while label node 42 was never activated
(figs. 9 and 10). Experiment 4 was identical to experiment 3 in all other aspects. In Plunkett et al. (2008),
a single, unchanging, spoken label was given to every stimuli.

 Legs Tails Necks Ears Labels

Figure 9: Potential input layer activation patterns for the narrow condition’s first archetype with a single, unchanging label for
each input.

 Legs Tails Necks Ears Labels

Figure 10: Potential input layer activation patterns for the narrow condition’s second archetype with a single, unchanging label
for each input.

Experiment 5: Narrow condition with random labels
One of the two binary label nodes were randomly activated during each input sequence (figs. 11 and 12).
Otherwise, experiment 5 was identical to experiments 3 and 4. The original study gave the children one of
the two labels at random for each stimuli, with no correlation between the visual stimuli and the label that
was given (Plunkett et al., 2008).

10

 Legs Tails Necks Ears Labels

Figure 11: Input layer activation pattern for the narrow condition’s first archetype with a single, random label for each input.
Each label had an equal probability of being the sole activated label node for a given input sequence.

 Legs Tails Necks Ears Labels

Figure 12: Input layer activation pattern for the narrow condition’s second archetype with a single, random label for each input.
Each label had an equal probability of being the sole activated label node for a given input sequence.

Results
Testing the Network
The outputs from the experiments are shown in the following subsections (figs. 16 - 20). The Y axis,
ranging from 1 to 42, represents the nodes of the input layer, while the X axis represents the sequential
activation of individual input layer nodes. The leftmost point on the X axis is the activation of the first
node and the rightmost point shows the activation of the 42nd input node. Darkened areas indicate high
levels of activation, while white space indicates an absence, or trace levels, of node activity. These
darkened regions of activation are also representative of category formation within a given input slab, and
the network as a whole. Each output image represents the state of the input layer.

Figure 13 shows the input sweep, where each node is scanned in a gradient sequence subdivided
into 407 steps. These 407 steps are actually 407 prototypical inputs given at evenly spaced intervals along
the input layer. Each of the network’s output plots (figs. 13-20) can therefore be subdivided into 407
vertical columns, with each column representing a testing input that activates a small slice of the input
layer. Since each prototypical test input occurs at a certain place along the input continuum, associated
nodes within that vertical slice will be activated as well. These patterns of activation were learned during
the training phase. While this is happening, the middle and upper layers are allowed to activate freely.
The network is then allowed to resonate deterministically and reflect upon the prototypical inputs before
generating an output. Mid and output layer nodes that co-activate with the input nodes are activated as
well, but are not relevant for demonstrating categorization, so they are omitted from the generated output
drawings. This procedure tests the network’s learning of the training inputs. In figure 13’s sweep,
resonance has yet to occur, therefore the training patterns, with their activations and co-activations of
associated nodes, have no bearing on this output and only the sequential activation of input layer nodes is
shown. Examples of post resonance outputs can be seen in figures 14 - 20.

11

If too many training inputs are given, the network’s output (fig. 14) begins to resemble the input
sweep of figure 13, as seen in the jagged diagonal activation band running from node 1 to 42. Again,
these outputs show the state of the input layer. Figure 14, and the remaining outputs in the results section
(figs. 15 - 20) are post-resonance outputs where the network has been allowed to reflect upon the
prototypical inputs in the testing phase. In figure 14, categorical behavior has broken down and the
network is beginning to unlearn categories. To see this contrast, notice that categorical behavior can be
seen clearly in figure 18 where there is distinct movement along the central diagonal showing the
sequential activation of each input node and its correlates, and by the dark checkered boxes along this
diagonal which remain distinct from each other, and do not merge. This is not so in figure 14 where there
is a meshing of feedback from the visual prototypical test inputs. Eventually, with enough inputs, the
network’s output will come to nearly match the form of the input sweep (fig. 13).

Figure 13: Input sweep with zero training inputs

Figure 14: Output of the narrow condition with congruent labels after 30,000 inputs

12

If there are too few inputs then category formation cannot occur. Figure 15 shows the network
after only 30 inputs. We can see that the network is registering the various entities of the inputs, but
without drawing the correlations necessary to form categories. All experimental outputs (figs. 16 - 20)
were the result of 3,000 inputs, although stable categorization does occur in as few as 400 inputs.

Figure 15: Output of the narrow condition with congruent labels after 30 inputs

Very faintly shaded categorization bands and the stretching of categorization bands on the right

edge of the output visualizations, seen most clearly in figure 16 below, are remnants from the stochastic
patterns generated during the dreaming phase.

Experiment 1: Broad condition
The dark bands in figure 16 replicate the conditions of Plunkett et al’s (2008) broad condition. Slab 1
(nodes 1-10), representing the creature’s legs in the visual inputs, and slab 2 (nodes 11-20), which
represents the tails, are independent of each other. Thus, an activation of nodes 1-5, very short or short
legs, will activate simultaneously with nodes 11-15 (a small or very small tail) or 16-20 (a large or very
large tail), with no influence of one slab upon the other. The first slab of visual input nodes is
anti-correlated with the nodes of slab 4 (nodes 31-40), which represents the ears. An activation of nodes
1-5, or short legs, will always activate nodes 36-40 — very spread ears or spread ears. Following the same
logic, an activation of nodes 6-10 will invariably activate nodes 31-35; i.e. long legs will always predict
bunched ears. The same anti-correlational relationship exists between slabs 2 and 3 (neck length). An
activation in the region of nodes 11-15, a small tail, will activate nodes 26-30, a long neck. An activation
of nodes 16-20, a large tail, predicts an activation of nodes 21-25, a short neck. The network’s output
aligns with the features of the broad condition drawings (fig. 1), which led the infant participants to form
a single general category centered on Plunkett values 3333. The empty space at the top of figure 3 are
nodes 41 and 42, the binary spoken labels. Labels were not used in experiment 1 or 2, so there are no
activations in that region.

13

 Figure 16: Broad condition output

Experiment 2: Narrow condition
The network conditions for the narrow condition were mechanically similar to experiment 1, except the
activations in each slab were correlated with the first slab, nodes 1 to 10. If slab 1 received an input in
nodes 1 to 5, the other slabs received inputs in their respective lower halves. In plain terms, a visual input
of a creature with short legs would generate a small tail, a short neck, and bunched ears for the other
features. A visual input of long legs would create a creature with long legs, a large tail, a long neck, and
spread ears. This relationship is clearly shown in the output (fig. 17). At any given time, only the first or
the second half of the nodes in every visual input slab are activated. In Plunkett et al.’s (2008) experiment,
every narrow condition creature had Plunkett feature values that were all 1 or 2 (a dark band in the first

five nodes of a slab), or which
were all 4 or 5 (a dark band in
the last five nodes of a slab),
leading the infants to form
two perceptual categories.
This network adequately
replicates their input and
generates two sets of
categories, as seen by the two
differing patterns in the
columns of figure 17. The first
category, shown in the
leftmost column and every
second column thereafter,
represents a short legged,
small tailed, short necked, and
bunched eared creature. The

14

second category, present in the second column from the left and every second column thereafter,
represents a long legged, large tailed, long necked, and spread eared creature. These match exactly with
the two perceptual categories from Plunket et al.’s experiment (fig. 1).

Experiment 3: Narrow condition with congruent labels
The results of experiment 3 (fig. 18) were identical to experiment 2 for the 40 visual input nodes.
Experiment 3 introduced the binary spoken labels, represented by nodes 41 and 42. In this experiment, the
binary labels followed the same activation pattern as the visual input nodes, which produced the same
checkerboard pattern in nodes 41 and 42 that was present in the 40 visual nodes. In this instance, there is
no difference between the perception of visual categories and the perception of audible categories,
matching the findings of Plunkett et al. (2008). The activation band is intentionally darker for the label
nodes because they were programmed to receive higher activity levels than the visual nodes in order to

mimic the overriding effects of
the spoke inputs upon the
visual inputs. The label nodes
received activations valued at
5.0 while the visual input nodes
received activation values of
4.5 at their respective peaks.
This is in line with the results
of Plunkett et al. (2008), which
found that congruent spoken
labels had no impact on visual
category formation in the infant
test subjects.

 Figure 18: Narrow condition with congruent labels output

Experiment 4: Narrow condition with a single label
Experiment 4, the output of which is shown in figure 19, was identical to experiment 3 except that a
single binary spoken label node was activated for every input. This is shown by the dark activation band
at node 41 extending across the entire width of the x-axis. The activity level in node 41 is greater than the
activity levels in the 40 visual input nodes, indicating that the single category from the spoken label is the
preferred output. Plunket et al.’s (2008) findings that a single spoken label led to a single category,
despite presence of two visual categories, were not replicated here because the presence of the single label
node had no discernible influence on the output of the 40 visual input nodes.

15

 Figure 19: Narrow condition with a single label output

Experiment 5: Narrow condition with random labels
The fifth experiment, with the output shown in figure 20, was nearly identical to experiments 3 and 4. In
experiment 5, one randomly selected label was activated for each visual input. This produced a thick,
continuous activation band in nodes 41 and 42 with no discernible pattern of activation. Plunkett et al.
(2008) found that random label assignments interfered with the infant’s perception of categories, and led
to the infants forming no categories. As in experiment 4, the activations of the label nodes had no
influence on the outputs of the 40 visual nodes, and thus the results from Plunkett et al. (2008) were not
replicated.

 Figure 20: Narrow condition with random labels output

16

Conclusion and Discussion
The attempt to replicate the results of each of Plunkett et al.’s (2008) experiments with a restricted
Boltzmann machine was only partially successful. The broad condition, narrow condition, and narrow
condition with congruent labels were successfully modelled. The final two experiments with their novel
stimuli, the narrow condition with a single label and with a random label, were not successfully modelled.
The label nodes and their deviant activation patterns had no influence over the formation of visual
categories. This model also did not take into account infant looking time, which was accounted for in the
successful modelling of Plunkett et al. (2008) by Gliozzi et al. (2008). Gliozzi et al’s (2008) SOM model
was also able to incorporate one-shot learning to model the presentation of Plunkett et al.’s (2008) stimuli
to the infant participants. One-shot learning has proven to be extremely difficult to achieve with
Boltzmann machines. For example, this paper’s mechanical Boltzmann machine children require
approximately 400 inputs to form categories, whereas the human infants required only a single viewing of
each stimuli.

Figure 14 is perhaps the most linguistically interesting and plausible of this network’s outputs. If
we trace the progression of the diagonal testing sweep from beginning to end, we see the visual
representations activating the spoken labels, and the visual inputs. In this regard, the network has
convincingly imitated natural speech, albeit in a simplistic manner. The output of figure 14 is the result of
overtraining the network, as mentioned briefly in the results section. Overtraining breaks down the strictly
defined categories within the network’s code, allowing them to distort, mesh, and merge while retaining
the same general features of a network that has been trained on a more ideal number of training inputs.
Once again, this mimics real speakers. As we know, human linguistic categories, whether they be vowel
sounds, associated lexical items, or anything else, are rarely so neatly delimited. There is often ambiguity
when we speak that is resolved by context (McGurk & MacDonald, 1976). In that sense, the output of the
overtrained network shows these grey areas, both figuratively and literally. Essentially, the network
described in this paper is a simple brain featuring a rudimentary auditory cortex and a visual cortex, and
possesses the ability to categorize a limited set of objects and speech sounds in its environment based on
statistical regularities of the input. Functionally, this network is very similar to its immediate predecessor
created by Boersma (2019), which created vowel categories based on vibrations in a simulated basilar
membrane.

There are several ways in which this network could be improved. It was previously discussed that
the network was unable to reproduce Plunkett et al’s (2008) results from the experiments with randomized
labels and the single label because the visual categorization was not affected by the novel label schemes.
A possible solution, suggested by Boersma, is to use three label nodes while maintaining the binary
labels. The newly added node could freely associate with either label in the hope that it would merge with
one and add a greater net activity and then, hopefully, influencing the visual section of the input
continuum to organize itself based on the inputs fed to the label nodes, rather than their own nodes.
Another solution that could be used independently or in conjunction with the addition of a third label
node, is to train the network on other categorization tasks beforehand. The children in Plunkett’s (2008)
study were 11 months old, with all the language inputs and experience that comes with that. They were
not the blank slate, artificial children created by this network to analyze statistical distributions of inputs.
By giving the network more and diverse categorization tasks beforehand, it may come to more closely
resemble the categorization behavior of real children. Last, is the problem of one-shot learning. The

17

infants were able to reliably form categories after a single exposure to each line drawing, but the
Boltzmann machine requires several hundred inputs for categories to form. If a novel method could be
devised for one-shot learning in a Boltzmann machine, it would improve the authenticity of the neural
network’s simulation, and would likely have further and greater implications for the field of machine
learning. However, at present, there are no suggestions for how to accomplish this.

Citations

Boersma, P. (2019). Simulated distributional learning in deep Boltzmann machines leads to the
emergence of discrete categories. Proceedings of the 19th International Congress of
Phonetic Sciences, 1520-1524. Melbourne, Australia.

Boersma, P. & Weenink, D. (2020). Praat: doing phonetics by computer [Computer program].
Version 6.1.10, retrieved 25 March 2020 from http://www.praat.org/

Boersma, P., Benders, T. & Seinhorst, K. (2020). Neural networks for phonology and phonetics.
Manuscript, University of Amsterdam

Gliozzi, V., Mayor, J., Hu, J., & Plunkett, K. (2008). The Impact of Labels on Visual
Categorization: a Neural Network Model. Proceedings of the Annual Meeting of the
Cognitive Science Society, 30(30).

Gustafsson, L., Jantvik, T. & Paplinski, A. (2014). A Self-organized artificial neural network
architecture that generates the McGurk effect. Proceedings of the International Joint
Conference on Neural Networks, 3974-3980.

McGurk, H. and MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588),
746–748.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. (2011). Multimodal Deep Learning.
Proceedings of the 28th International Conference on Machine Learning. Bellevue, WA,
United States of America.

Plunkett, K., Hu, J., & Cohen, L. (2008). Labels can override perceptual categories in early
infancy. Cognition 106(2), 665-81.

http://www.praat.org/
https://www.researchgate.net/journal/0010-0277_Cognition

18

Appendix

#Paul Boersma and Zackary Gibson (2020)

form Sweep categories in a deep-belief network
 integer Number_of_data 0 (= input sweep)
 choice experiment: 3
 button broad condition
 button narrow condition

button narrow condition with congruent labels
button narrow condition with single label
button narrow condition with random label

endform

numberOfInputNodes = 42
numberOfMiddleNodes = 80
numberOfOutputNodes = 50
sigma = 1.0
peakWidth = 1.5
learningRate = 0.001
edge = 2
numberOfMeanFieldEchoes = 10
numberOfGibbsEchoes = 10
semf.offsetNode = 0

numberOfLegs = 2

legMean [1] = 2.5
legMean [2] = 8.5

numberOfTails = 2
tailMean [1] = 12.5
tailMean [2] = 18.5

numberOfNecks = 2
neckMean [1] = 22.5
neckMean [2] = 28.5

numberOfEars = 2
earMean [1] = 32.5
earMean [2] = 38.5

numberOfLabels = 2
meanLabel [1] = 41.0
meanLabel [2] = 42.0

19

x# = zero# (numberOfInputNodes)
y# = zero# (numberOfMiddleNodes)
z# = zero# (numberOfOutputNodes)
a# = x#
b# = y#
c# = z#
u## = zero## (numberOfInputNodes, numberOfMiddleNodes)
v## = zero## (numberOfMiddleNodes, numberOfOutputNodes)

Spread up

procedure setFourInputs: .formantLegs, .formantTails, .formantNecks, .formantEars

x# ~ if col >=1 and col <=10 then 5 * exp (-0.5 * ((col - .formantLegs) / peakWidth) ^ 2) - 0.5
else self fi

x# ~ if col >=11 and col <=20 then 5 * exp (-0.5 * ((col - .formantTails) / peakWidth) ^ 2) - 0.5
else self fi

x# ~ if col >=21 and col <=30 then 5 * exp (-0.5 * ((col - .formantNecks) / peakWidth) ^ 2) - 0.5
else self fi

x# ~ if col >=31 and col <=40 then 5 * exp (-0.5 * ((col - .formantEars) / peakWidth) ^ 2) - 0.5
else self fi
endproc

procedure setFiveInputs: .formantLegs, .formantTails, .formantNecks, .formantEars, .label

x# ~ if col >=1 and col <=10 then 5 * exp (-0.5 * ((col - .formantLegs) / peakWidth) ^ 2) - 0.5
else self fi

x# ~ if col >=11 and col <=20 then 5 * exp (-0.5 * ((col - .formantTails) / peakWidth) ^ 2) - 0.5
else self fi

x# ~ if col >=21 and col <=30 then 5 * exp (-0.5 * ((col - .formantNecks) / peakWidth) ^ 2) - 0.5
else self fi

x# ~ if col >=31 and col <=40 then 5 * exp (-0.5 * ((col - .formantEars) / peakWidth) ^ 2) - 0.5
else self fi

x# [41] = 0
x# [42] = 0
x# [.label] = 5

endproc

procedure spreadUp

GBC2016: 661
z# = zero# (numberOfOutputNodes) ; or to random values

20

for iecho to numberOfMeanFieldEchoes
y# = sigmoid# (mul# (x#, u##) + mul# (v##, z#) + b#)
z# = sigmoid# (mul# (y#, v##) + c#)

endfor
endproc

procedure resonate

for iecho to numberOfGibbsEchoes
x# = mul# (u##, y#) + a#
z# = randomBernoulli# (sigmoid# (mul# (y#, v##) + c#))
y# = randomBernoulli# (sigmoid# (mul# (x#, u##) + mul# (v##, z#) + b#))

 endfor
endproc

procedure hebbianLearning: .learningRate

a# += .learningRate * x#
b# += .learningRate * y#
c# += .learningRate * z#
u## += .learningRate * outer## (x#, y#)
v## += .learningRate * outer## (y#, z#)

endproc

procedure antiHebbianLearning: .learningRate

@hebbianLearning: - .learningRate
endproc

Erase all
Font size: 10
oversampling = 10
numberOfTimes = (numberOfInputNodes - 5) * oversampling + 1
image = Create simple Matrix: "inputImage", numberOfInputNodes, numberOfTimes, "0"

procedure drawImage

Select outer viewport: 0, 3.7, 0, 2.5
selectObject: image
Paint image: 0, 0, 0, 0, 0, 0
One mark left: 1, "yes", "yes", "no", ""
Marks left every: 1, 5, "yes", "yes", "no"
if number_of_data = 300

White
endif
Select outer viewport: 0.1, 3.3, 0.1, 2.4
Text bottom: "yes", "Time \->"

21

Black
Text left: "yes", "Input node \->"
Select outer viewport: 0.1, 3.3, 0.3, 2.4
Remove

endproc

if number_of_data = 0

for itime to numberOfTimes
formant = 1 + edge + (itime - 1) / oversampling
@spreadUp: formant
selectObject: image
Formula: ~ if col = itime then x# [row] else self fi

endfor
@drawImage

 exitScript ()
endif

Train the network.

if experiment = 1

for ipattern to number_of_data
legs = randomInteger (1, 2)
tails = randomInteger (1, 2)
necks = if tails = 1 then 2 else 1 fi
ears = if legs = 1 then 2 else 1 fi

formantLegs = randomGauss (legMean [legs], sigma)
formantTails = randomGauss (tailMean [tails], sigma)
formantNecks = randomGauss (neckMean [necks], sigma)
formantEars = randomGauss (earMean [ears], sigma)

@setFourInputs: formantLegs, formantTails, formantNecks, formantEars
@spreadUp
@hebbianLearning: learningRate
@resonate
@antiHebbianLearning: learningRate
endfor

endif
if experiment = 2

for ipattern to number_of_data
legs = randomInteger (1, 2)
tails = if legs = 1 then 1 else 2 fi

22

necks = if legs = 1 then 1 else 2 fi
ears = if legs = 1 then 1 else 2 fi

formantLegs = randomGauss (legMean [legs], sigma)
formantTails = randomGauss (tailMean [tails], sigma)
formantNecks = randomGauss (neckMean [necks], sigma)
formantEars = randomGauss (earMean [ears], sigma)

@setFourInputs: formantLegs, formantTails, formantNecks, formantEars
@spreadUp
@hebbianLearning: learningRate
@resonate
@antiHebbianLearning: learningRate

endfor
endif
if experiment = 3

for ipattern to number_of_data
legs = randomInteger (1, 2)
tails = if legs = 1 then 1 else 2 fi
necks = if legs = 1 then 1 else 2 fi
ears = if legs = 1 then 1 else 2 fi

formantLegs = randomGauss (legMean [legs], sigma)
formantTails = randomGauss (tailMean [tails], sigma)
formantNecks = randomGauss (neckMean [necks], sigma)
formantEars = randomGauss (earMean [ears], sigma)
formantCongruentLabel = if legs = 1 then meanLabel [1] else meanLabel [2] fi

@setFiveInputs: formantLegs, formantTails, formantNecks, formantEars,

formantCongruentLabel
@spreadUp
@hebbianLearning: learningRate
@resonate
@antiHebbianLearning: learningRate

endfor
endif
if experiment = 4

for ipattern to number_of_data
legs = randomInteger (1, 2)
tails = if legs = 1 then 1 else 2 fi
necks = if legs = 1 then 1 else 2 fi
ears = if legs = 1 then 1 else 2 fi

23

formantLegs = randomGauss (legMean [legs], sigma)
formantTails = randomGauss (tailMean [tails], sigma)
formantNecks = randomGauss (neckMean [necks], sigma)
formantEars = randomGauss (earMean [ears], sigma)
formantSingleLabel = meanLabel [1]

@setFiveInputs: formantLegs, formantTails, formantNecks, formantEars,

formantSingleLabel
@spreadUp
@hebbianLearning: learningRate
@resonate
@antiHebbianLearning: learningRate

endfor
endif
if experiment = 5

for ipattern to number_of_data
legs = randomInteger (1, 2)
tails = if legs = 1 then 1 else 2 fi
necks = if legs = 1 then 1 else 2 fi
ears = if legs = 1 then 1 else 2 fi

formantLegs = randomGauss (legMean [legs], sigma)
formantTails = randomGauss (tailMean [tails], sigma)
formantNecks = randomGauss (neckMean [necks], sigma)
formantEars = randomGauss (earMean [ears], sigma)
formantRandomLabel = randomInteger (41.0, 42.0)

@setFiveInputs: formantLegs, formantTails, formantNecks, formantEars,

formantRandomLabel
@spreadUp
@hebbianLearning: learningRate
@resonate
@antiHebbianLearning: learningRate

endfor
endif

Test the network.

for itime to numberOfTimes

#initializing x

24

formant = 1 + (itime - 1) / (numberOfTimes - 1) * (numberOfInputNodes - 1)
x# ~ 5* exp (-0.5 * ((col - formant) / peakWidth) ^ 2) - 0.5
@spreadUp
for iecho to numberOfGibbsEchoes

x# = mul# (u##, y#) + a#
z# = sigmoid# (mul# (y#, v##) + c#)
y# = sigmoid# (mul# (x#, u##) + mul# (v##, z#) + b#)

endfor
selectObject: image
Formula: ~ if col = itime then x# [row] else self fi

endfor

@drawImage

