
MSC ARTIFICIAL INTELLIGENCE

MASTER THESIS

Whisper to Voice

by

BRAM KOOIMAN

11415665

June 24, 2019

36 EC
January - June 2019

Supervisor:
Prof. PAUL BOERSMA

Assessor:
Dr. ZEYNEP AKATA

UNIVERSITY OF AMSTERDAM

iii

Abstract

Whisper to Voice

by Bram Kooiman

Speaking in a whispered voice can greatly reduce stuttering. Inspired by this fact,
we research whisper-to-voice conversion models that can perform in real-time on
phone hardware. We place special interest in paradigms that don’t require paired
data, transcribed data or data alignment by dynamic time warping. We find it nec-
essary to condition on speaker identity, but show that the model can successfully
learn to adapt to new speakers with few examples. The model shows promising
results for whisper-to-speech conversion while maintaining the constraint that the
model be fast and lightweight.

Keywords: real-time performance, spectrograms, cycle-consistency, WGAN, speaker
embedding.

v

Acknowledgements
Special thanks to Joris Castermans of Castermans Connected, Majid Bahrepour of
Luminis, Prof. Paul Boersma of the University of Amsterdam and Prof. David van
Leeuwen of the Radboud University for providing ideas, guidance and/or support
throughout the research.

vii

Contents

Acknowledgements v

1 Introduction 1
1.1 Whispp . 1
1.2 Speech-to-Text, Text-to-Speech . 1
1.3 Mathmatical Conventions . 2
1.4 Report structure . 2

2 Background 5
2.1 Whispered and Voiced Speech . 5
2.2 Spectrograms . 5
2.3 The Griffin-Lim algorithm . 8
2.4 The Mel-Scale . 8
2.5 Spectral Envelope . 11
2.6 Mel-Frequency Cepstral Coefficients (MFCCs) 12
2.7 Pre-Emphasis . 12
2.8 Linear Predictive Coding (LPC) . 12
2.9 Non-Negative Matrix Factorisation (NMF) 14
2.10 Gaussian Mixture Models (GMM) . 15
2.11 Dynamic Time Warping (DTW) . 15

3 Whisper-to-Speech on the Spectrogram Level 19
3.1 Sequence-to-Sequence Translation with LSTMs (W2S-L) 19
3.2 RBM pretraining for LSTM (W2S-R) . 22
3.3 CNN with WGAN training (W2S-C) . 26

4 Speaker Identity 35
4.1 Speaker Identification as Auxiliary Task (W2S-aux) 35
4.2 Speaker Embeddings (W2S-embed) . 39

5 Beyond the Spectrogram Level 45
5.1 Mel-scaled STFT (STmFT) . 45
5.2 Importance and Difficulty of Phase . 47
5.3 Literature Review on Spectrogram Inversion 48
5.4 PhaseNet . 49
5.5 Multichannel Spectrograms (W2S-M) . 51
5.6 Pitch Estimation and the Spectrogram as Filter 54

6 Future Research 57
6.1 WORLD vocoder . 57
6.2 Flow-based Generative Modelling of the Waveform 57
6.3 Preventing Redundant Computations 62

7 Discussion 63

viii

A Exploratory Experiment with WaveNet 65

B Additional runs for W2S-C 67

C Additional runs for W2S-embed 69

Bibliography 71

1

Chapter 1

Introduction

1.1 Whispp

Stutterers find it hard to speak naturally, and can get behind in social settings or
miss job opportunities because of it. Strangely enough, most stutterers have no
problem singing, playing wind instruments or — as it turns out — whispering [17].
In this thesis we explore the possibilities of Deep Learning for whisper-to speech-
conversion (W2S). The insights gained by this research will be used to develop
Whispp, an app that helps stutterers speak freely. With the app, a stutterers can
make a phone call or even speak face-to-face (which would require especially low
latency).

Though the causes and therapies for stuttering are outside the scope of this the-
sis, we hope that Whispp will eventually be incorporated into stutter therapies and
teach stutterers confidence of speech, or at least give them a workaround for the time
being. Uninhibited speakers may also benefit in situations where they want to make
a phone call without disturbing a silent environment.

The app will be downloadable in the play store from late 2020 onward, but data
acquisition for Whispp is ongoing

Everyone is encouraged ’donate their voice’ via:
www.whispp.com
username: Whispp

password: HelpWhispp

1.2 Speech-to-Text, Text-to-Speech

The first idea that comes to mind is to connect Speech-to-Text and Text-to-Speech.
Both methods are well-researched and even available for plugging into a custom
application12 [40, 13, 50]. Though it is a very good place to start, it is not free of
objections. Most importantly, a textual (or phonemic) representation will get rid of
information about the speaker’s identity and the prosody of the sentence she speaks.
Prosody is the ’melody’ of speech, and the rhythm of syllabic emphasis. If we don’t
want to lose this info, it is possible to learn to recognise it from whisper (parallel to
STT), represent it with some latent vector and condition the TTS network on it.

In this thesis we propose to only perform the latter strategy and let go of an
intermediate symbolic representation. This thesis focuses on the conversion from
audio→ audio, not from audio→ text→ audio. As a small bonus, this will free us
from requiring phoneme-level labeling on the data.

1https://cloud.google.com/speech-to-text/
2https://cloud.google.com/text-to-speech/

2 Chapter 1. Introduction

Translatotron [20] is a speech-to-speech language translator that shows that it is pos-
sible to learn all of audio recognition, semantics, grammar and audio synthesis im-
plicitly.

1.3 Mathmatical Conventions

• For scalars, we denote x. Vectors (and timeseries of scalars) x are bold. An en-
try of a vector is a scalar xi, and is not bold. Matrices or tensors X are capitals.
An entry of a matrix can be a vector and will be denoted by xt. Nontheless, a
single entry of a matrix or tensor will be denoted by a capital Xij.
• � and � are element-wise matrix operations (division and multiplication). A

matrix squared X2 denotes an elementwise operation. XY denotes a matrix
multiplication.
• ||...|| is the Euclidean norm.

||x|| =
√

∑ x2
i

• The imaginary number is i:

x = 2 + 3i ; <(x) = 2 ; =(x) = 3 ;
√

i = −1

• The space of all real numbers is denoted with R and the space of all complex
numbers is denoted with C. x ∈ R3 specifies that x is a 3-dimensional real-
valued vector and X ∈ C3×3 specifies that X is a complex-valued 3-by-3 matrix.
• A domain of [0, 1) is continuous and envelops all numbers between 0 and 1,

but not 1 itself. A set of integers is denoted with curly brackets {0,1}.
• Sampling from a distribution is denoted by x ∼ U(0, 1).
• The Gaussian distribution is denoted by N (µ, σ)
• σ(·) denotes the logistic sigmoid function:

σ(x) =
1

1 + e−x

• Unless otherwise specified, ’logarithmic’ refers to the natural logarithm (base
e).

• ∇YX and ∂X
∂Y mean the same thing and denote the gradient of X with respect

to Y.
• fθ is a function parameterized by θ. We’ll often use greek symbols for parame-

ters.
• L is used to denote a loss. It is always the objective to minimize it.

1.4 Report structure

Chapter 2 discusses background information on audio processing and speech. In
Chapter 3 we discuss three paradigms for whisper-to-speech conversion, namely
LSTMs for sequence-to-sequence translation (W2S-L), LSTMs with RBM-pretraining
(W2S-R) and Convolutional U-net with WGAN training (W2S-C). In chapter 4 we
encourage the network to output audio with the true spoken voice of the whisperer
(W2S-aux and W2S-embed). Throughout the thesis, we map spectrograms to audio
with the Griffin-Lim algorithm. In chapter 5 explore alternatives (PhaseNet, W2S-M

1.4. Report structure 3

and an implicit source-filter model), but none improve over the Griffin-Lim algo-
rithm. Chapter 6 discusses areas of future research, primarily alternatives to using
spectrograms altogether.

Audio samples are available on google drive via the following link:
https://drive.google.com/open?id=1h3V9SbvBUwIp8GCgroEJSSG3hT6eB3fh.

The GitHub repo of this work is protected and only available to the reviewers of this
work.

5

Chapter 2

Background

This chapter gives a general overview of relevant audio processing concepts. Section
2.1 explains the difference in whispered and voiced speech, and brings to light the
challenges of conversion. Sections 2.2 - 2.6 discuss audio features. Sections 2.8 - 2.10
discuss older paradigms for whisper-to-speech conversion. Section 2.11 discusses
Dynamic Time Warping (DTW); a method that warps two time series closer together
so that each entry in one series can act as a supervised target for each entry in the
other series.

2.1 Whispered and Voiced Speech

There are two types of phonemes; voiced and unvoiced phonemes1. A voiced phoneme
requires that the vocal cords vibrate. A quick check to see if a phoneme is voiced is
to press the throat while speaking the phoneme; you will feel the vibration. The dif-
ference in pitch (high voice, low voice) comes from how the vocal cords vibrate. The
difference between phonemes comes from how that sound is ’filtered’ by the shape
of the mouth and tongue.

The main difference between whisper and speech is that during whisper the vo-
cal cords never vibrate. For voiced phonemes — which should be accompanied by
vibrating vocal chords — this means that whispering and speaking is very different.
By doing various ’tricks’ with the higher frequencies present in whisper we can give
the impression of there being a pitch, while in reality there is none. For unvoiced
phonemes — which are inherently pitchless — the difference between whisper and
speech is not as pronounced.

Prosody is the ’melody’ of speech and the rhythm of syllabic emphasis. In En-
glish and Dutch, emphasized phonemes are not monotonous but have a sliding pitch
profile (usually downward, but upward for questions). Subtler cues are a raised in-
tensity (volume) and longer duration.

It seems there’s two primary challenges for a whisper-to-speech conversion model:
it must know when synthesising pitch is appropriate (only when voiced phonemes
are being whispered) and the synthesized pitch must adhere to the prosodic profile
of the whisper. Additionally, the voice of the synthesized speech should resemble
that of the speaker.

2.2 Spectrograms

Sound consists of changes in air pressure. It can be best represented with a one-
dimensional array; air pressure values for discrete points in time. Such arrays are

1which phonemes are voiced and unvoiced can be found at http://www.phonemicchart.com/

6 Chapter 2. Background

FIGURE 2.1: The raw audio wave and a spectrogram of a short ut-
terance. The waveform is of samplerate 16kHz and the spectrogram
has been obtained with a fourier window of 36ms and hop length
of 12ms. The spectrogram is enhanced by 3

√
10 · log(x + 1) for better

visualisation.

very fine-grained and typically have many thousands of entries per second (44.1k
entries per second is a common setting). Because there are so many entries and be-
cause the entries by themselves encode no high-level semantic meaning it is a com-
plicated matter to perform analysis or manipulation on the raw audio waveform.

The spectrogram is a common alternative representation of audio. It shows the fre-
quencies that are present within a short slice of time. This is similar to how humans
experience sound; we can hear high and low frequencies simultaneously. By evalu-
ating slices of time consecutively, we can see how frequency presence changes over
time. The spectrogram is thus a two-dimensional representation of sound.

The Math. The spectrogram is derived from the short-time Fourier transform (STFT).
We evaluate STFT at F frequencies of interest and over T temporal bins. We call
the result of the STFT, X ∈ CF×T, the ’complex spectrogram’. The spectrogram
A ∈ RF×T (or its full name the ’magnitude spectrogram’) is its absolute value. Sup-
pose we have a discrete signal x. We compute the presence of a frequency f in a
small frame of x consisting of N samples, starting at timepoint m.

X f m = STFTf m(x) =
m+N

∑
n=m

xnwneiφn (2.1)

where
φ =

2π f
N

and w is a windowing function such as the Hamming window. Windowing func-
tions are close to zero near the borders of the window. It is customary to take over-
lapping windows controlled by a parameter h called the ’hop-size’. This is done to
combat the loss of information at the borders of the frames due to the windowing
operation.

The complex spectrogram has a real and an imaginary part. The words ’real’ and
’imaginary’ are unfortunate because of their meaning in everyday life. Engineers
sometimes prefer the terms ’in-phase’ and ’quadrature phase’. Indeed, if we rewrite

2.2. Spectrograms 7

STFT according to Euler’s formula we can see the origin of this naming convention.

eiθ = cos(θ) + i sin(θ)

X f m = STFTf m(x) =
m+N

∑
n=m

xnwn(cos(φn) + i sin(φn))

The ’real’ part of the complex value is simply how much the windowed signal agrees
with an in-phase perfect cosine of the frequency of interest and the ’imaginary’ part
is how much the windowed signal agrees with a perfect cosine of the frequency a
quarter phase off (a perfect sine).

We can consider the in-phase and quadrature-phase components of the STFT
to be the axes of a cartesian coordinate system. The spectrogram value is then the
radius of the polar coordinate system. Hence spectrogram values are always real
and non-negative.

A = |X| (2.2)

A f t =
√
<(X f t)2 +=(X f t)2

The magnitude spectrogram A of equation 2.2 is an ’energy spectrogram’. It is
also common to take the ’power spectrogram’ |X|2 or normalize the spectrogram to
decibel scale by A ← log(A + ε), where ε is a small constant to prevent numeri-
cal instability (because log(0) = −∞). We shall be using the normalization strategy

3
√

10 · log(x + 1), where x is a scalar entry of the energy spectrogram, because it
maps the values to a non-negative domain where most are between 0 and 1. This
normalization strategy works well for visualisation and we’ve found it also works
well as an input to neural networks.

In this work we use the shorthand ’spectrogram’ for ’magnitude spectrogram’, spec-
trograms are only complex if explicitly stated so. We shall also coin the term ’radial
spectrograms’, which is a complex spectrogram expressed in polar coordinates.

FFT. The operation of 2.1 has computational complexity O(n2). The Fast Fourier
Transform of Cooley and Tukey [5] makes uses of the symmetry of the operation to
reduce computational complexity toO(n log n). This trick only works if the frequen-
cies are linearly spaced.

The Uncertainty Principle. Because we must assume a signal in a window to be
stationary we encounter an uncertainty principle. If we take very small windows
we can be very certain in how the frequencies develop temporally, but there will be
more uncertainty in exactly what frequencies are present. Vice versa, if we take large
windows we have high resolution in the frequency dimension, but low resolution in
the temporal dimension.

The Missing-Phase Problem. By extracting spectrograms we lose phase informa-
tion. The problem with this is most evident in audio synthesis. The inverse of STFT
requires a complex spectrogram. If a magnitude spectrogram has been obtained,
care must be taken on how to modify its real values to complex before the inverse
STFT can synthesize audio from it. Chapter 5 delves deeper into this subject. For
now, we resolve the missing-phase problem with the Griffin-Lim algorithm.

8 Chapter 2. Background

FIGURE 2.2: A spectrogram with large window size (left) is precise in
the frequency dimension, but imprecise in the temporal dimension.

Vice versa for a spectrogram with small window size (right).

2.3 The Griffin-Lim algorithm

If the phases of a spectrogram are incorrect, its resynthesized audio can contain fre-
quencies that were not present in the original spectrogram. This becomes apparent
by taking the spectrogram of the resynthesized audio (an example of this is given in
section 5.2).

The Griffin-Lim algorithm [11] converges to a complex spectrogram whose in-
version won’t change the magnitude spectrogram too much.

Given a magnitude spectrogram A ∈ RF×T, we first construct an initial complex
spectrogram X0 ∈ CF×T by imposing random phase values Φ ∈ RF×T on it.

Φ f t ∼ U(−π, π)

X0 = A� cos(Φ) + iA� sin(Φ)

Next, we iterate iSTFT and STFT, all the while maintaining the magnitudes of
the original spectrogram.

Yt = STFT(iSTFT(Xt))

Xt+1 = A�Yt � |Yt|

20 iterations is enough for noticable improvement, we shall be using 100 itera-
tions in this work. Chapter 5 considers approaches that aim to improve over the
Griffin-Lim algorithm.

2.4 The Mel-Scale

The frequencies f that are evaluated for the STFT are by default linearly spaced.
However, people do not always perceive linear steps in frequency as equivalent
changes in pitch. The mel-scale reflects the human perception of equidistant steps
better. Figure 2.3 shows that the mel-scale is linear in the lower frequency range

2.4. The Mel-Scale 9

FIGURE 2.3: Linear-scale (left) and Mel-scale (right) spectrograms of
speech. The mel scale is linear up to 1 kHz, after which it becomes log-
arithmic. In the linear spectrum we see overtones as equidistant lines
whereas the mel scale shows them as increasingly close together. Au-
dio has been enhanced with pre-emphasis α = .92 and spectrograms

have been enhanced by 3
√

10 · log(x + 1) for better visualisation.

(below 1kHz) and logarithmic in the higher frequency range (above 1kHz)2.

xm =

{
xl if xl < 1000
1000 log(xl

1000) + 1000 if xl ≥ 1000

As it is derived from perceptual studies with humans, several definitions coexist
within the audio processing community. We follow the convention of Librosa3 and
the well-established MATLAB Auditory toolbox of Slaney [51].

Mel-spectrograms are obtained by extracting a linear spectrogram and multiplying
it with a matrix — the mel-filterbank, M, shown in figure 2.4. There is no con-
sensus on the proper way to invert this process. In this work, we construct the
mel-inversionbank M∗ as the normalized transpose of the mel-filterbank. We first
normalize the rows to sum to one, and next we normalize the columns to sum to the
reciprocal of what the rows of the mel-filterbank sum to.

Am = MAl

Where Al ∈ RF×T is the linear spectrogram, Am ∈ RN×F is the mel-spectrogram,
M ∈ RN×F is the mel filterbank, F the amount of frequency bins of STFT, T timesteps
and N the amount of mel-bins. We convert Am back to linear by multiplying with
the mel-inversion bank M∗ ∈ RN×F:

M∗ij =
(MT)ij

∑M
k (MT)ik ·∑F

l (MT)l j

Al ≈ M∗Am

Although the pseudo-inverse M∗ = (MT M)−1MT can be used as well, figure 2.4
shows that there are some cases where it fails and has extreme and even negative

2The relative importance of the high and low frequency domain for speech is of course debatable.
It would however be wrong to say that the range between 8kHz and 1kHz is seven times as important
as the range below 1kHz.

3https://librosa.github.io/librosa/

10 Chapter 2. Background

FIGURE 2.4: The mel-filterbank (top), its pseudo-inverse (left) and in-
versionbank used in this work (right) under n f f t = 540 and nmels =
128. The pseudo-inverse is shown with a different colormap that bet-

ter shows its problems with value range.

2.5. Spectral Envelope 11

FIGURE 2.5: Mel-spectrogram (top) and spectral envelope (bottom)
of the vowel [i] (’ee’ in ’sheep’) spoken at lower pitch(left) and higher
pitch(right). The spectral envelope (in green) is drawn by hand. En-

ergies have been normalized by 3
√

10 · log(x + 1).

values, although it should be a non-negative matrix.
Another approach would be to employ a non-negative least squares solver. In

chapter 5 we propose to draw mel-spectrograms directly from the audio without an
intermediate linear spectrogram and filter- or inversionbank.

2.5 Spectral Envelope

The spectral envelope is a tight bound that wraps the peaks in the spectrogram. The
spectral envelope of a phoneme is generally not affected by the pitch with which
it is uttered4. Figure 2.5 shows the phoneme [i] (’ee’ in ’sheep’) spoken at low and
high pitch. The spectral envelope can be seen by plotting a single column of the
spectrogram and connecting the peaks of the spectrum. The pitch is the distance
between the peaks of the spectrum, but the height of the peaks is determined by the
(relatively unchanging) spectral envelope.

An overtone is a frequency that is an integer multiply of the fundamental frequency.
Each of the horizontal lines in top figures of 2.5 (and consequently each of the peaks

4Some interplay between pitch and spectral envelope exists, but one of the most succesful vocoders
— the STRAIGHT vocoder [22] — is based on the assumption that they are separate, which shows that
it is a fairly safe assumption.

12 Chapter 2. Background

in the red curve of the bottom figures) is an overtone. A peak in the spectral enve-
lope — the green curve of figure 2.5 — is a formant.

The fact that a phoneme’s spectral envelope does not change under different pitch
(or even whisper) is because it is a result of the shape of the mouth and tongue
while voicing the phoneme. The formants are the frequencies of resonance of the
physical body. Whatever the source, the body will want to resonate under those
frequencies. This is why a change in pitch does not impact the spectral envelope
and why formants are also present in whisper.

2.6 Mel-Frequency Cepstral Coefficients (MFCCs)

Another common feature used in audio processing are Mel-Frequency Cepstral Co-
efficients (MFCCs) [33]. They are obtained by taking the log of the energies in a
mel-scaled spectrogram and then taking the Discrete Cosine Transform (DCT) over
an isolated spectrogram column as if it itself were a signal.

Xk =
N−1

∑
n=0

xncos[
π

N
(n +

1
2
)k] ; k = 0, ..., N − 1.

The DCT expresses the signal as a weighted sum of k cosines. It is similar to the
STFT, but with only real values (and taken over the spectral domain, which moves it
up to the ’cepstral’ domain). The success of the MFCC feature may be related to its
lower frequency components picking up on the shape of the spectral envelope.

2.7 Pre-Emphasis

In speech we typically see that the lower frequencies are of higher energy than the
higher frequencies. To counter-balance this and flatten the spectrum, we perform
pre-emphasis on the raw audio wave:

xt ← xt − αxt−1

The factor α is computed by:
α = e−2πFδt

Where δt is the duration of a sample and F the frequency above which the spectral
slope will increase by 6 decibels per octave. Because we set F = 214 Hz at a sample
rate of 16 kHz, we find α = .92. Other common settings are δt = 2.2676 · 10−5

(sample rate of 44.1 kHz) and α = .97, also implying that F ≈ 214 Hz. Figure 2.6
shows the effect of pre-emphasis. After new speech is synthesized by the model,
the inverse of the pre-emphasis operation is applied over the raw wave to obtain
de-emphasised sound.

2.8 Linear Predictive Coding (LPC)

Although originally intended for signal compression, LPC [41] can be used for resyn-
thesis and even Whisper-to-Speech conversion. It requires so little memory that it
could be used on 1970’s hardware in the text-to-speech synthesis toy Speak&Spell
[9]. This was in a day that storing audio of pre-recorded phonemes already required

2.8. Linear Predictive Coding (LPC) 13

FIGURE 2.6: Spectrograms of speech without pre-emphasis (left) and
with pre-emphasis (right) on 16 kHz audio with α = .92. Spectro-
grams on the bottom row have been normalized by 3

√
10 · log(x + 1).

This normalization strategy primarily boosts low energies, which
makes the effect of pre-emphasis less pronounced.

too much memory.

Math. In LPC, we assume that the observed signal s is the result of an original signal
u that has been modified by a filtering mechanism. The filtering mechanism is mod-
elled as auto-regressive, which means that the current value of the signal depends
on its own past values. Specifically for LPC, the current value is a linear combination
of previous values, hence the name ’Linear Predictive Coding’. Mathematically, a
source-filter model where s is the result of filtering a source signal u can be written
as:

sn =
p

∑
k=1

aksn−k + G
q

∑
l=0

blun−l (2.3)

Where G is the ’gain’ of the original signal. A signal is assumed to have p poles
and q + 1 zeros, which means a value depends on the past p timesteps of the output
signal s and on the past q timesteps of the input signal u. For LPC we consider
an ’all-pole’ model, where q = 0 and b0 = 1. The coefficients αk are found by by
minimizing the least squares error:

E = (sn −
p

∑
k=1

aksn−k)
2

Setting all factors ∂E
∂αk

to 0 yields p linear equations with p unknowns.

p

∑
k=1

αkRi−k = Ri ; 0 ≤ i ≤ p

14 Chapter 2. Background

Where

Ri =
N−1

∑
n=i

snsn−i

In the case of signal compression, this in itself might not seem so useful. Whereas
first we had to represent the signal s by its n values, we now have signal u with n
values and p coefficients αk. However, if we assume u to be a simple signal we can
compress it further. If u is gaussian white noise, we can represent it with a simple
boolean. If u is a periodic signal, we need only store its frequency f0. We then need
to ship only this single scalar and k factors αk. On the other end we can resynthesize
according to eq 2.3. The periodic source signal u is usually a pulse train.

Much like spectrograms, it is typical to determine LPC coefficents over a short
window of time that has been smoothed by a windowing function. Taking succes-
sive windows maps the development of sound over time.

Relation to physiology. The source-filter assumption of LPC match very well with
the physiology of speech. The source being either white noise or a periodic signal
matches well with speaking either a voiced or unvoiced phoneme. The coefficients
αk determine the filtering mechanism of the mouth and tongue that changes the
source sound into recognizable phonemes.

Whisper-to-speech conversion can be achieved by determining the αk’s from
the whispered speech. If the phoneme is meant to be unvoiced, the sound can be
synthesized from noise. If the phoneme is meant to be voiced, it can be synthe-
sized from a periodic signal. Methods that employ LPC today focus on finding the
voiced/unvoiced decision and finden f0 if the phoneme is meant to be voiced.

Related Work The work of Konno et al. [26] learns intended f0 from recorded whis-
pers. Test subjects were asked to imitate a perfect sine with a whispered vowel. The
whisper is represented with Mel-Frequency Cepstral Coefficients (MFCCs) and from
this representation condensed vectors are gathered by PCA. From these condensed
vectors f0 prediction is learned by linear regression. When a new whisper arrives
its speech can be synthesized using the LPC coefficients and the predicted f0. This
method is elegant in that it does not require paired data; in fact it does not require
spoken data at all.

The filter coefficients can sometimes not be ’well-behaved’; taking the average of
two sets of filter coefficients will not render the ’average’ of the two sounds. And
although it doesn’t occur in nature, it is easy to by accident construct an unstable
filter; one that increases amplitude over time.

2.9 Non-Negative Matrix Factorisation (NMF)

NMF learns to represent a matrix as a linear combination of basis vectors. It can be
useful in representing audio as a lower-dimensional vector so that feature matching
can be done more efficiently. The constraint that all matrices be non-negative is well-
matched with spectrograms, because they themselves are non-negative.

We train a set of basis vectors B ∈ Rd×k of which the original spectrogram is approx-
imately a linear combination, weighted by weights W ∈ Rd×n. The matrix B can be
seen as a collection of k basis vectors. The matrix W is then the weights with which

2.10. Gaussian Mixture Models (GMM) 15

the basis vectors must be multiplied in order to approximate S ∈ Rk×n.

S ≈ BW

NMF can be trained by backpropagating the Mean Squared Error (MSE) between the
reconstructed and the original spectrogram. B and W are initialised nonnegative.

L = (S− BW)2

B is updated in the direction of −∇BL and W is updated in the direction of −∇WL.

Other ways to train NMF include Lee and Seung’s Multiplicative Update Rule [27]
and Kim and Park’s Alternating Non-Negative Least Squares [23].

Related Work The work of Meenakshi et al. [32] trains basis vectors from artifi-
cial ’colored noises’ so that any new whispered noise can be represented as a 5-
dimensional vector of weights. This allows for efficient training of a Deep Neural
Network (DNN) that can predict whether a sounding whispered phoneme is voiced
or unvoiced. Being able to make this distinction is important for LPC synthesis.

2.10 Gaussian Mixture Models (GMM)

GMMs match features of whispered and spoken voice (these can be spectral fea-
tures, MFCCs, f0 or LPC coefficients) by concatenating pairs of whispered features
x and spoken features y into a longer vector z. We train a Gaussian Mixture Model
that specifies a complex probability distribution over the vectors z. Given a new
whispered example x, the problem is reduced to solving

ŷ = argmaxy p(Y|X)

Which can be approximated for example by performing gradient ascent steps, ini-
tialized at mixture modes with a high mixing coefficient.

Related Work The work of Sharifzadeh et al. [48] focusses on post-laryngectomised
speech reconstruction. After enhancement and other pre-processing steps, whis-
pered and spoken features are matched using GMMs.

One problem with the approach is that gradient ascent needs to be performed for
each frame. In practice we can get away with only a few gradient steps, not requiring
complete convergence. Another problem is that it is required that aligned whisper
and speech data is available.

2.11 Dynamic Time Warping (DTW)

Many whisper-to-voice conversion methods assume that paired data is available,
meaning that for every frame of a whispered utterance we know which frame of a
target spoken utterance we should map to. Humans never speak with reliable tim-
ing twice over, certainly not on the level of spectrogram frames, which means that
the source and target sequence will be misaligned. Dynamic Time Warping aims [4]

16 Chapter 2. Background

FIGURE 2.7: The Dynamic Time Warping (DTW) algorithm. The first
step is to fill the accumulative distance matrix from bottom left to top
right and the second step is to backtrack the path that determined the

minimal cumulative distance.

to warp two signals closer together.

DTW finds the warping path that minimizes the total distance between two series
without breaking continuity. Continuity means that a sample of series a can only be
matched with a sample of timeseries b that comes after the samples in b that have
already been matched. A sample may be matched more than once, but may not be
skipped.

We explain DTW by a simple example, illustrated in figure 2.7. Suppose we have
two time series a and b. They need not be of the same size.

a =
[
0 2 3 1 3 1

]
b =

[
3 1 2 3 2 1

]
The first step of DTW is to construct a cumulative distance matrix M. Every

entry (i, j) depends on the entries below it and to its left. We fill the matrix from the
bottom left to top right. D(x, y) can be any distance function, but for this example it
is simply |x− y|.

M[i, j] = D(a[i], b[j]) + min(M[i− 1, j], M[i, j− 1], M[i− 1, j− 1])

Given M, the optimal warping path is found by backtracking through the ma-
trix. This can be done by taking the minimal value of the three options to its left,
bottom, or bottom-left, starting at the top-right. If there is a tie it means that both
paths leading up to the entry of consideration are equally optimal. The example in
figure 2.7 breaks the tie by favoring left over bottom entries, but any heuristic would
suffice.

In this example the warped series aw and bw that match each other best are:

aw =
[
0 0 2 3 1 3 1

]
bw =

[
3 1 2 3 2 2 1

]
Counter-intuitively, both series are warped and can only be longer or equal than
their original.

This simple example considers sequences of scalar values, but DTW can also be ap-
plied to sequences of vectors — such as spectrograms. The only change is in the
distance function D, which can be any measure of similarity. For vectors, we can use

2.11. Dynamic Time Warping (DTW) 17

the Euclidean distance.

DTW on the waveform can change the nature of the sound considerably. Addition-
ally, the sequence length of even a small piece of audio is many thousands, which
incurs the need for a very large matrix M. For this reason DTW is typically per-
formed on spectrograms or MFCCs — where a second is a sequence of a few dozen
vectors rather than thousands.

DTW works when the sequences are already somewhat alike. Although a person
might experience a whispered and spoken phoneme as very similar, this is not the
case for their waveforms or spectrograms.

The work of Sharifzadeh et al. [49] artfully combats the problem by artificially
whisperising spoken voice recordings. This is done by removing pitch of voiced
phonemes. The whisperised audio is naturally perfectly aligned with the spoken au-
dio it is derived of. DTW can be more succesfully applied between the whisperised
and whispered voice to obtain the warping path. Applying the warping path to
the spoken voice yields a better pairing between whispered and spoken voice. In
this work we follow the stategy of McLoughlin et al. [31], who perform DTW on
25-order MFCCs. MFCCs are more alike in the whisper- and speech domains than
spectrograms are, because they partly encode the spectral envelope.

Cuturi et al. [6] formulate soft-DTW, a differentiable version of DTW. It can be
used as a loss function and backpropagated to a neural network. When the neural
network is close to convergence it is likely that the converted item and the target
are similar, which helps DTW. If the cold start problem can be overcome, this is
a tremendous benefit over performing DTW offline and regarding its outcome as
ground-truth. However, the complexity of the loss metric isO(m× n) for sequences
of length m and n. For the lengths of sequences we typically encounter in this work
(about 500 spectrogram columns), this becomes prohibitively expensive.

In the next chapter we will find that the methods that don’t require DTW perform
better than those that do. Indeed, one contribution of this thesis is that DTW can be
circumvented by using an adversarial learning paradigm rather than a supervised
one.

19

Chapter 3

Whisper-to-Speech on the
Spectrogram Level

In this chapter we perform Whisper-to-Speech (W2S) conversion. We constrain our-
selves to mel-spectrograms. At test time, we convert them to audio by multiplying
with the mel-inversionbank (section 2.4) and performing 100 Griffin-Lim iterations
starting with random phases drawn from φ ∼ U(−π, π).

Section 3.1 discusses the use of an LSTM for sequence-to-sequence translation
(W2S-L). In section 3.2 we add RBM pretraining to that paradigm (W2S-R). In sec-
tion 3.3 we propose to train a CNN with WGAN loss (W2S-C). A benefit of W2S-C
is that it doesn’t require DTW.

Dataset. We train the models of this thesis on the WTIMIT [29] dataset (consisting of
about 15 hrs of parallel data). All speech is in English. Half the speakers are from the
United States (US) and half the speakers are from Singapore (SG). We hold out the
data of 4 speakers to constitute the test set (US and SG male and female). We assign
85% of the remainder to the training set and 15% to the validation set. The data
of each speaker contributes to each partition by the same ratio. For most runs we
define ’training epochs’, which are loops over a subset of the training set (because a
loop over a full epoch would take too long to grant insight in the learning process).
The full training set contains about 19k items.

We use pre-emphasis with α = .92 on the audio (as discussed in section 2.7). 128-
dimensional mel-scaled spectrograms taken with a window size of 540 samples and
hop size of 180 (for a samplerate of 16kHz this amounts to roughly 36ms and 12ms).
Spectrograms are normalized by 3

√
10 · log(x + 1), which maps to a non-negative

range where most values are below 1.
W2S-L and W2S-R require that input and target sequences are aligned. We em-

ploy the DTW strategy of McLoughlin et al. [31] and align by 25-order MFCCs.
Figure 3.1 shows one such alignment. Although the columns now match, the source
and target audio can suffer some distortion.

3.1 Sequence-to-Sequence Translation with LSTMs (W2S-L)

Long Short-Term Memory [16] networks are a flavour of Recurrent Neural Networks
(RNNs). They are commonly used in an autoregressive setting; the network is tasked
with extrapolating the input sequence. We denote this as [x1, x2, x3] → [x2, x3, x4].
When predicting the t-th item of the target sequence the model has access to all
items up to and including the t-th item of the source sequence. However, LSTMs
can also be used for sequence-to-sequence translation by [x1, x2, x3]→ [y1, y2, y3]. In
predicting yt, it is important to have information about yt−1. Although yt−1 is not

20 Chapter 3. Whisper-to-Speech on the Spectrogram Level

FIGURE 3.1: Dynamic Time Warping for temporal alignment. Blue
markers are drawn by hand. Audio can be found in ’drive/DTW/...’

and are based on wTIMIT data with the tag ’s123u051’

directly an input to the network, the information is implicitly passed on through the
hidden- and cell-states of the LSTM (in fact, for a single layer LSTM the output is the
hidden state).

An LSTM cell can be defined by the following operations:

it = σ(Wxixt−1 + Whiht−1 + bi)

ft = σ(Wx f xt−1 + Wh f ht−1 + b f)

ot = σ(Wxoxt−1 + Whoht−1 + bo)

ĉt = tanh(Wxcxt−1 + Whcht−1 + bc)

ct = ft � ct−1 + it � ĉt

ht = ot � tanh(ct)

Where xt is the input at time t and ht and ct the hidden- and cell-states that are
passed on to the next timepoint. σ(·) is the logistic sigmoid function. The output of
an LSTM cell is also ht. LSTM-cells can be stacked, in which case the input of the
second layer xl=2

t is the output (or hidden state) of the first layer hl=1
t . Each layer

will have its own hidden- and cell-state.
A notable occurrence in training LSTMs on long sequences is that of exploding

gradients. When backpropagating ∂L
∂W we encounter the term ∂L

∂ht

∂ht
∂W . ht depends

on W directly, but also indirectly through ht−1, so we must also take ∂L
∂ht

∂ht
∂ht−1

∂ht−1
∂W

into account. ht−1 in turn depends on ht−2, and so on until the initial hidden state.
When sequences are very long, summing these gradients can cause updates that are
very large, and these can destabilise learning. Truncated Backprop Through Time
(TBPTT) ?? proposes to only update the weights by taking into account terms ∂ht−k

∂W
where k is smaller than some threshold. In this work we prevent exploding gradi-
ents by only showing the network sequences of length 40, which is small enough to
prevent exploding gradients, but large enough to model speech on a relevant time
scale (about half a second).

3.1. Sequence-to-Sequence Translation with LSTMs (W2S-L) 21

 LSTM LSTM

FIGURE 3.2: Training Schematic for the LSTM model. Dashed arrows
represent backpropagation of the loss to the parameters of the model

with its color.

We train W2S-L to minimise the Mean Squared Error (MSE) between aligned input
sequences X = [x1, ..., xT] and Y = [y1, ..., yT].

L = MSE(X, Y) = MSE([ŷ1, ..., ŷT], [y1, ..., yT])

As a unified expression for MSE, we write:

MSE(X, Y) =
1
D

D

∑
i
(x∗i − y∗i)

2

Where x∗ ∈ RD is a multidimensional vector, matrix or tensor X vectorised into a
single vector.

Network Architecture. The input- and output dimensionality of W2S-L is xt, ŷt ∈
R128. The LSTM consists of 3 stacked LSTM cells with h ∈ R256 appended with a
linear layer that projects back to 128 dimensions. The final layer has a softplus acti-
vation.

Training Procedure. The LSTM-based converter is trained with the ADAM [24] op-
timizer with a learning rate of 10−4 and weight decay of 10−4 for 100 training epochs
(each a quarter of a true epoch). Other parameters of the ADAM optimizer are left
at default settings (β1 = .9, β2 = .999). Its convergence is shown in figure 3.3.

FIGURE 3.3: Convergence of the Mean Squared Error loss of the
LSTM model. Training loss in orange, validation loss in blue.

Results and Discussion. Figure 3.4 shows an output of W2S-L. It appears that the

22 Chapter 3. Whisper-to-Speech on the Spectrogram Level

FIGURE 3.4: Whisper (top), converted by W2S-L (left) and ground-
truth speech (right). The excerpt tag in the wTIMIT dataset is

’s107u348’. Audio can be found on ’drive/W2S-L/...’

model knows to output a fundamental and its first overtone, indicating that W2S-L
is starting to synthesize a pitch, but it is quite monotonous. It is likely synthesizing
the ’mean pitch’ of the data. When listening to the audio, the pitch gets lost in the
overall noise caused by the blurriness of the spectrogram. Words are unintelligible.

MSE can drive a network to output smooth spectrograms. If the network can’t
decide between a pitch of 100 Hz (characterised by overtones of 100, 200, 300, etc...)
and a pitch of 110 Hz (characterised by overtones of 110, 220, 330, etc...) the MSE is
minimised by outputting a mixture of the two, which is a blurry spectrogram.

3.2 RBM pretraining for LSTM (W2S-R)

In order to prevent smooth spectrograms we employ RBM pretraining and optimize
a different objective than MSE.

Restricted Boltzmann Machines. RBMs [15] can be trained as feature extractors in
an unsupervised way. The goal of an RBM is to maximize the loglikelihood of the
data.

A standard RBM assumes that the input vector x and the hidden vector h are
binary vectors. Conditional probabilities of vector values are:

p(h|x) = σ(Wx + b)

p(x|h) = σ(WTh + a)

The probability of an (x, h)-pair is proportional to the free energy function E:

E(x, h) = −aTx− bTh− xTWh

p(x, h) =
1
Z

e−E(x,h) (3.1)

Where a, b and W are learnable parameters (from here on out referred to as θ). h is a
latent vector and Z is a the normalizing constant — sometimes called the "partition

3.2. RBM pretraining for LSTM (W2S-R) 23

function" — obtained by summing over all possible (x, h)-pairs:

Z = ∑
x,h

e−E(x,h) (3.2)

When properly trained, an RBM can be used to map an input vector x to a hidden
vector h that encodes in it meaningful features of the data. Additionally, an RBM
can also map a hidden vector h to a vector x in the original feature space.

Intuitively, the logprobablility of the data can be maximized by updating the
parameters to decrease the energy function for points in the dataset and increase it
for other points (the latter limits the growth the partition function caused by the first
update). The update rule of the RBM reflects this.

∂ log p(Xdata)

∂θ
= Edata[

∂E(x, h)
∂θ

]−Enot−data[
∂E(x, h)

∂θ
]

An unbiased sample of the first term can easily be obtained by computing p(h|x)
from a known datapoint x and sampling h from it. The second term is harder to
obtain. Since no (x, h)-pair can be drawn ’from nothing’ (we have no explicit ex-
pression of the joint distribution), it would have to be obtained by performing al-
ternating Gibbs-sampling steps for a long time. Instead, Hinton [15] proposes to
use a reconstruction xrecon from p(x|h) where h is the hidden state that has been
used for the first term. This approach is an approximation of the gradient of the
loglikelihood and is actually closer to the gradient of another objective called the
Contrastive Divergence. Consequently, the algorithm is often referred to as the Con-
trastive Divergence algorithm (interestingly, Sutskever et al. [53] note that it doens’t
approximate the gradient of the CD either). Despite not being the true gradient of
the loglikelihood, the approximation works well in practice. It is customary to sam-
ple from p(h|x) only once, and use for other values only probabilities, not samples
[14]. Concretely:

hdata ∼ p(h|xdata)

xrecon = p(x|hdata)

hrecon = p(h|xrecon)

∂ log p(xdata)

∂θ
≈ ∂E(xdata, hdata)

∂θ
− ∂E(xrecon, hrecon)

∂θ

∂E(x, h)
∂a

= −x ;
∂E(x, h)

∂b
= −h ;

∂E(x, h)
∂W

= −xhT

Parameters are updated along gradients of mini-batches (Stochastic Gradient De-
scent), often with a momentum term for stability.

A logistic unit is a poor representation for spectrograms (a binary one is certainly so).
It is more fitting to replace the binary visible units by linear units with independent
Gaussian noise. The energy function then becomes:

E(x, h) = ||(x− a)� σ||2 − bTh− (x� σ)TWh

Where σ is a vector of standard deviations of the independent noise, ||...|| is the
euclidian norm and � is elementwise division. Although it is possible to learn the

24 Chapter 3. Whisper-to-Speech on the Spectrogram Level

variance of the noise per input dimension it is more practical to normalise each com-
ponent to have zero mean and unit variance. The energy function and its gradient
then become simpler.

E(x, h) = ||x− a||2 − bTh− xTWh

∂E(x, h)
∂a

= a− x ;
∂E(x, h)

∂b
= −h ;

∂E(x, h)
∂W

= −xhT

Gaussian-Bernoulli RBMs typically require a lower learning rate to show stable learn-
ing than their standard Bernoulli-Bernoulli counterpart and consequently train more
slowly.

To check for overfitting, one would like to keep track of the loglikelihood of data in
the training set and the validation set. If the model is overfitting, the loglikelihood
of the training set is much higher. However, computing the loglikelihood (Eq 3.1)
requires computing the partition function (Eq 3.2), which is intractible. If we keep
track of their ratio, however, the partition function is cancelled out. To check for
overfitting, we keep track of the free energy ratio:

r =
E(xval , p(h|xval))

E(xtrain, p(h|xtrain))

The model is overfitting if r � 1.

W2S-R. In the first training stage of W2S-R, we train two separate RBMs — one
trained on whispered and one on spoken data. Spectrograms are normalised such
that each feature is distributed according to N (0, 1).

In the second training stage, we train an LSTM to match the sequence of learned
features [hx1, ..., hxT] to [hy1, ..., hyT] where hx, hy ∈ {0, 1}R128 (which are thus bi-
nary vectors). The loss function of the LSTM is Binary Cross-Entropy (BCE) as op-
posed to MSE:

L = BCE(HŶ, HY) = BCE([ĥy1, ..., ĥyT], [hy1, ..., hyT])

BCE(X, Y) = − 1
D

D

∑
i

y∗i log x∗i + (1− y∗i) log(1− x∗i)

Where x∗ ∈ [0, 1],RD and y∗ ∈ {0, 1},RD are vectorised forms of multidimensional
vectors, matrices or tensors X and Y.

The bidirectional nature of RBMs means that at test time the conversion X → HX →
HŶ → Ŷ can be made. A training schematic is shown in figure 3.5. Because the
targets are binary we can also keep track of accuracy during training to check for
convergence and overfitting.

RBMs for Crisper Spectrograms. The update rule for RBMs promotes the joint log-
probability of (xdata, hdata) pairs where hdata is binary, while suppressing the joint
logprobability of (xrecon, hrecon) pairs where hrecon is non-binary. This means that the
RBM is trained to have vectors x associated with binary hidden vectors h deemed
as realistic and vectors x with continuous hidden vectors h as unrealistic. Discretiz-
ing a hidden vector hcontinuous → hbinary and computing p(x|hbinary) thus consti-
tutes the closest realistic output for the predicted hcontinuous, whereas computing

3.2. RBM pretraining for LSTM (W2S-R) 25

 RBM-W

 RBM-S

 RBM-W

 LSTM LSTM

 RBM-S RBM-S

 RBM-W RBM-W

 LSTM LSTM

 RBM-S RBM-S

 RBM-W

FIGURE 3.5: Training Schematic for W2S-R. During the first training
stage (left) the RBMs are trained in an unsupervised manner. The
second training stage (center) shows training of the feature matching
LSTM. At test time (right) the spoken RBM is used in reverse to obtain

spectrograms from the predicted hidden features.

p(x|hcontinuous) would constitue a mixture of all likely realistic outputs, which — as
we’ve seen for the case of MSE — is itself not a realistic output. We hope discritizing
the hidden vector this will help prevent smooth spectrograms.

Related Work. RBM-pretraining is also used by McLoughlin et al. [31], except in
their work the spectral envelope is matched (not the spectrogram), an additional
model is employed to estimate pitch and synthesis is done using the STRAIGHT
vocoder [22]. Their feature matching network is a fully connected feed-forward neu-
ral network, which processes each frame independently from its neighbours. In or-
der to give the network some sense of context, they employ temporal delta-features.

Network Architecture. We set the dimensionality of the hidden feature vectors h ∈
{0, 1},R128. Though this may not seem like much of an information bottleneck, the
binarity of the hidden values restricts the model’s expressiveness enough for it to
have to learn meaningful features in order to achieve its objective.

The feature matching network of W2S-R has the same architecture as W2S-L, ex-
cept that the final activation function is tanh (as opposed to softplus). Before input to
the model and output to the loss function the domain is moved from [0, 1] to [−1, 1]
and back.

Training Procedure. In the first training stage of W2S-R we train the RBMs with SGD
(learning rate 10−4) for a total of 400 training epochs (each a quarter of a true epoch).
In the first 20 training epochs we employ a momentum of .5, and in the remaining
380 epochs we employ a momentum of .9. Convergence of the RBM pretraining
phase is shown in figure 3.6. The free energy ratios are .99 throughout training,
which confirms that the models are not overfitting.

26 Chapter 3. Whisper-to-Speech on the Spectrogram Level

FIGURE 3.6: Convergence of the RBM reconstruction loss (orange)
and the free energy ratio (blue) for the whispered domain (left) and

the spoken domain (right).

FIGURE 3.7: Convergence of the Binary Cross Entropy loss (left) and
accuracy (right) of W2S-R.

During the second training stage of W2S-R, the RBM weights are frozen. The
LSTM of W2S-R is trained under the same settings as W2S-L, except for the objective
to minimize, which is Binary Cross Entropy. Its convergence is shown in figure 3.7.

Results and Discussion. Figure 3.8 shows that both the RBMs for both the whis-
pered and the spoken domain reconstruct their input well, indicating that they have
learned valuable features of their domains. In figure 3.9 we see a conversion of the
full W2S-R model, showing that discretizing the RBM feature vector has a positive
effect on crispness. However, the audio is not intelligible and the audio has a non-
human character. The general performance of W2S-R improves slightly over W2S-L.

3.3 CNN with WGAN training (W2S-C)

As a third alternative we propose a Convolutional Neural Net (CNN) trained with
an adversarial loss function — specifically, the loss function of the Wasserstein Gen-
erative Adversarial Network (WGAN) [3, 12].

Rather than computing a distance between a prediction and a supervised target,
we train an additional, adversarial network to gauge how realistic the output. In
doing so, we circumvent requiring DTW-aligned ground truth data1, which figure
3.1 shows to be a source of data-contamination.

We first introduce the loss function(s) of the WGAN paradigm. We do this to famil-
iarize the reader with the concept of a ’critic’ network before we define its architec-
ture.

1In fact, the WGAN model doesn’t even require that a whispered or spoken item has a counter-
part in the other domain. However, it does help to ensure that the distributions differ only in speech
characteristics, not content

3.3. CNN with WGAN training (W2S-C) 27

FIGURE 3.8: Original whisper (top left), original speech (top
right), reconstructed whisper by RBM-W (bottom left) and recon-
structed speech by RBM-S (bottom right). Audio can be found on

’drive/RBM-S/...’ and ’drive/RBM-W/...’.

FIGURE 3.9: Whisper (top left), W2S-R with continuous hidden fea-
tures (top right), W2S-R with discretized hidden features (bottom
left) and ground-truth speech (bottom right). The excerpt tag in the
wTIMIT dataset is ’s107u025’. Audio can be found on ’drive/W2S-

R/...’

28 Chapter 3. Whisper-to-Speech on the Spectrogram Level

The WGAN Paradigm. We train an adversarial network — referred to as the ’critic’2

— to estimate a measure of distance — or similarity — between the distributions of
real and converted speech. The converter3 is trained to minimize this distance.

The critic estimates the Wasserstein distance — also known as the Earth Mover Dis-
tance (EMD).

W(pa, pb) = in fγ∈π(pa,pb)E(a,b)∼γ||a− b|| (3.3)

Where π(pa, pb) is the set of all joint distributions γ(a, b) whose marginals are pa
and pb. ∫

b
γ(a, b)db = pa(a)∫

a
γ(a, b)da = pb(b)

Intuitively, γ(a, b) is the amount of probability mass that must be moved from a to
b to transform pa into pb. The Wasserstein distance is the cost of the optimal γ(a, b).
Finding the Wasserstein distance is hard. However, by the Rubinstein-Kantorovich
duality [58] we can instead solve an equivalent problem:

W(pa, pb) = sup||g||L≤k[Ea∼pa g(a)−Eb∼pb g(b)] (3.4)

The condition is that the function g is k-Lipschitz continuous. A function g : A → B
is k-Lipschitz continuous if for distance functions dA and dB on spaces A and B it
holds that:

dB(g(a1), g(a2)) ≤ K · dA(a1, a2) ; ∀a1, a2 ∈ X

Put differently, the slope of a k-Lipschitz continuous function never exceeds k.
We find the function g by implementing it as a neural network (the critic) pa-

rameterized by φ. Lipschitz-continuity can be achieved by adding a loss term that
penalises the gradient norm for deviating from k [12]. We set k = 1 and weight the
gradient penalty term by λ.

We draw a minibatch of whispered spectograms and convert it to speech using a
converter network f parameterized by θ:

Ŷ = fθ(X)

The objective of the critic is the supremum of equation 3.4 augmented with a loss
term for Lipschitz continuity. The Lipschitz constraint is enforced at the location of
an item Z, which is a linear interpolation of a ’fake’ speech spectrogram Ŷ and a real
speech spectrogram Y:

Z = interpolate(Ŷ, Y)

Lcr = gφ(Ŷ)− gφ(Y) + λ(||∇φgφ(Z)|| − 1)2

φ← ∇φLcr

The objective of the converter fθ is to minimize the estimated Wasserstein distance:

Ladv = gφ(Y)− gφ(fθ(X))

2We use the term ’critic’ instead of ’discriminator’, because the network does not classify
3We use the term ’converter’ instead of ’generator’, because the input is not random noise, but has

important meaning

3.3. CNN with WGAN training (W2S-C) 29

θ ← ∇θLadv

Note the sign flip between Lcr and Ladv; the critic minimizes the negative estimated
Wasserstein distance (because it wants to maximize it). The converter minimizes
the positive estimated Wasserstein distance. Although not a requirement, we draw
matching pairs of converted and real spectrograms, but they are not warped by
DTW.

Whereas in classic GANs [10] the gradient becomes small if the discriminator is more
powerful than the generator, the gradient of the critic is always one or near one. This
helps the converter to keep learning. It also means that we do not need to find a del-
icate balance between the two networks, which is an oft-experienced nuisance in
working with GANs. In the case of WGANs, the critic may — or even should — be
stronger than the converter. A stronger critic (more parameters or trained for more
steps) also implies that learning will be slower. However, it may be faster in the
long run if we don’t have to spend time tuning hyperparameters to craft the delicate
balance between the adversarials.

Though it is theoretically only necessary to provide an upper bound for ||∇φg(Z)||,
we follow the recommendation of [12] and define a two-sided constraint. Interest-
ingly, [52] find that a one-sided constraint converges faster. Wei et al. [59] promote
enforcing the Lipschitz constraint on an additional location Z∗ that lies closer to Y
by applying dropout to the critic.

For the optimal transport plan, the computed quantity of equations 3.3 and 3.4 is the
same. If the infimum in equation 3.3 is not found, the transportation plan is sub-
optimal and the estimate will be higher than the true Wasserstein distance. If the
supremum of 3.4 is not found, the estimate will be lower than the true Wasserstein
distance.

Reconstruction Loss. Theoretically, a converter network could learn to completely
ignore the input and ’hallucinate’ spectrograms that the critic deems realistic. In
order to teach the converter that the output should be related to the input, we in-
troduce a reconstruction loss. The reconstruction loss is the MSE between original
whisper X and X̂, obtained from converting fake speech Ŷ = fθ(X) back to whisper
with a speech-to-whisper (S2W) network f ∗η . Both fθ and f ∗η are trained to minimize
the reconstruction loss. A training schematic is shown in figure 3.10.

X̂ = f ∗η (Ŷ) = f ∗η (fθ(X))

Lrecon = α ·MSE(X, X̂)

θ ← ∇θLrecon

η ← ∇ηLrecon

The reconstruction loss is weighed by a term α in such that:

||∇θLadv|| ≈ ||∇θLrecon||

Although gradient magnitude is a crude proxy for how much learning is taking
place, it is an easy thing to monitor. It can help verify whether one loss term is not
completely overpowering the other.

30 Chapter 3. Whisper-to-Speech on the Spectrogram Level

W2S

Critic S2W

FIGURE 3.10: Training schematic for W2S-C. The dashed blue lines
running through other networks indicate that the loss is backprop-
agated through those networks, but the updates are only applied to

the parameters of the network with the same color.

Related Work. The image-to-image translation model pix2pix [18] has two loss
terms; L1-distance between the pixels of a converted and a target image and a loss
term computed by a discriminator that evaluates small patches of converted and
real images. Our work is different in that we use a self-supervised loss rather than a
supervised loss, and therefore don’t need an aligned target or any paired data. Our
critic evaluates the full output rather than patches of it.

Our model is most closely related to the Voice Conversion model of Fang et al.
[8]. They also employ both adversarial and reconstruction loss terms, except they
employ a discriminator per domain (for their task, a domain is a particular speaker,
whereas for our task a domain is either the whispered or the voiced speech mode).
They parameterize audio according to the WORLD vocoder [39], which deconstructs
it into pitch, harmonic spectral envelope and aperiodic spectral envelope. For voice
conversion, the aperiodic spectral envelope is copied, the harmonic spectral enve-
lope is converted by feeding its lower MFCCs to a fully connected DNN and pitch
is converted by a linear mapping. In our work, we use the WGAN paradigm rather
than the traditional GAN paradigm. The most striking difference is that our source
data does not have a pitch that can be mapped by a simple linear operation.

Network Architecture The U-net architecture of W2S-C converter is inspired by
pix2pix [18] and the work of Janssen et al. [19], who employ a U-net for audio source
separation.

We treat the frequency dimension as ’height’, temporal dimension as ’width’ and
the feature channel dimension as ’depth’. In the downward phase the channel depth
doubles with each layer and height is halved by max-pooling layers. After 6 layers,
the process is reversed. The featuremaps are upsampled by a transposed convolu-
tion of height and stride 2 to mirror the max-pooling operation (preserving depth).
After upsampling, the respective featuremap of the downward phase is cropped to
match and concatenated in the depth dimension. This combined featuremap is con-
volved to obtain a new featuremap (decimating the depth of the total featuremap to a

3.3. CNN with WGAN training (W2S-C) 31

Convolution

Dropout

Max-Pooling

Upsampling Convolution

Concatenation (along depth)

Crop

FIGURE 3.11: Architecture of the converter network (a convolutional
U-net). The figure shows 3 downward layers, but in reality the net-

work has 6.

quarter, or to half of the depth before concatenation of the downward featuremap).
The height of all convolutional kernels is 3, whereas the width is 2. During the
downward phase, the convolutions are dilated with an exponentially increasing fac-
tor. This idea has been borrowed from WaveNet [56], which employs increasingly
dilated convolutions to ensure a large receptive field size. Convolutions in the up-
ward phase are not dilated. All (non-upsampling) convolutions except the outer-
most layers employ dropout (p = .25). All convolutions (except the very last) are
followed by an instance normalisation4 layer and a leaky-ReLU activation function
with leakiness .1. The final convolution has ReLU activation. We set the depth of the
initial convolution to 10. The architecture is shown in figure 3.11.

There are two converter networks in our training paradigm; W2S and S2W. For
the former it is necessary that the network does not use information ’from the fu-
ture’, because this would cause latency in a real-time setting. Hence, before an input
is shown to the W2S network we pad it with zeros to the left (in the ’past’) and crop
feature maps from the left before concatenation. The S2W network does not have
this constraint, because we will never require real-time speech to whisper conver-
sion. Before an input is shown to the S2W network we pad it with zeros on both the
left and the right and crop featuremaps from both sides before concatenation.

The critic network is a convolutional network consisting of 5 convolutional layers
with 3× 3 kernels and 2× 2 stride that double channel depth per layer. A final con-
volution with kernel width 1 takes the height back to 1 (for our hyperparameters,
this means the kernel height is 3) and again doubles the depth. The following 1× 1
convolution halves the depth, and the final convolution takes depth to 1. Because
the input length of the critic is variable it may happen that the output is not a sin-
gle scalar. We make sure to output a single scalar by taking the mean of the final
outputs. All convolutions before height becomes 1 use instance normalisation. All
layers but the last use regular ReLU activation. The output has linear activation. No
dropout is applied. We set the depth of the initial convolution to 25. The architecture

4Instance normalization and batch normalization are equivalent if the batch size is 1.

32 Chapter 3. Whisper-to-Speech on the Spectrogram Level

3x3 strided Convolution
(increasing depth)

hx1 Convolution
(increasing depth)

1x1 Convolution
(decreasing depth)

Average Pooling

FIGURE 3.12: Architecture of the critic network. The figure shows
2 3x3-convolutions and a single convolution of decreasing depth,
whereas in reality there are 5 3x3-convolutions and 2 decreasing

depth convolutions.

FIGURE 3.13: Convergence of the critic loss (top-left), adversarial
loss (top-centre) and the reconstruction loss (top-right) of the Con-
volutional WGAN model. Validation losses in blue. The bottom row

shows ||∇θLadv|| (bottom-left) and ||∇θLrecon|| (bottom-right).

is shown in figure 3.12.

Training procedure. The weight of the gradient penalty is set to λ = 10 and the
weight of the reconstruction loss is set to α = 1000. For these settings, the gradients
of the converter network due to the two loss metrics are of about the same mag-
nitude. The critic is trained for 4 steps per training step of the converter network.
All networks are optimized with the ADAM optimizer with learning rate 10−4 for
600 training epochs of 600 items (counting the amount of items that the converter
network sees). Batch size is set to 1.

Figure 3.13 shows the close relation between the critic loss — the loss the critic
aims to minimize — and the adversarial loss — which the converter aims to mini-
mize. The critic loss is the negative estimated Wasserstein distance and the gradient
penalty. The adversarial loss is the positive estimated Wasserstein distance.

Results and Discussion. Figure 3.14 shows that W2S-C improves over W2S-L and
W2S-R. In samples by W2S-C wee can make out definite pitch and voices sound
more natural. Though intelligibility is far better than for W2S-L and W2S-R it is

3.3. CNN with WGAN training (W2S-C) 33

FIGURE 3.14: Whisper (left), converted by W2S-C (centre) and
ground-truth speech (right). The excerpt tag in the wTIMIT dataset is

’s123u031’. Audio can be found on ’drive/W2S-C/...’

FIGURE 3.15: Whisper (left), converted by W2S-C (centre) and
ground-truth speech (right). Questions are often characterised by ris-
ing pitch in the last syllable. W2S-C picks up on this prosodic profile.
The excerpt tag in the wTIMIT dataset is ’s123u070’. Audio can be

found on ’drive/W2S-C/...’

challenging to make out the words.
We notice that W2S-C can sometimes confuse the identity of the speaker. One

example is shown in figure 3.16. W2S-C is trained to have realistic output (with
the critic loss) and represent the input (with the reconstruction loss). The voice of
another person still being a realistic spectrogram gives the converter free reign in
modifying the personality of the speaker. Chapter 4 is dedicated to resolving that
issue.

All converter networks in W2S-L, W2S-R and W2S-C have about 1.5M parameters.
Although it is true that the WGAN paradigm employs additional networks — which
would increase the parameter count — we do not consider these to be part of the
conversion network, because they are only employed to teach the conversion net-
work. At test time, we require only the converter network itself. This observation
further strengthens our conclusion that among these alternatives W2S-C is the best
paradigm for whisper-to-speech conversion.

34 Chapter 3. Whisper-to-Speech on the Spectrogram Level

FIGURE 3.16: Whisper (left), W2S-C output (center) and ground truth
speech (right). The pitch of W2S-C is higher than is characteristic
for this speaker, implying that the model has trouble with speaker
identity. The excerpt tag in the wTIMIT dataset is ’s000u003’. Audio

can be found on ’drive/W2S-C/...’

35

Chapter 4

Speaker Identity

W2S-C can sometimes output a voice that does not resemble the real spoken voice
of the whisperer. Figure 3.16 shows an extreme example of this. This chapter is ded-
icated to resolving that issue.

Section 4.1 describes how we incentivize the converter network to maintain speaker
identity with an additional loss term. Challengingly, all the model has to infer spo-
ken voice characteristics from is the whispered input. In section 4.2 we propose to
train speaker embeddings that can be used as additional input.

4.1 Speaker Identification as Auxiliary Task (W2S-aux)

It should be possible to recognize the speaker from the output of the W2S model.
Therefore, we propose to train a W2S model to minimize an identification loss. In
the first stage of training we train a speaker identity classifier network (the identifier)
on spoken data and freeze its weights upon convergence. The second training stage
is similar to the procedure of W2S-C, but we add the identifier loss to the objective
and backpropagate its gradient to the W2S network. A training schematic is shown
in figure 4.1. We call the model W2S-aux.

The identifier loss is the Cross Entropy Loss. The output of the identifier iν is
a softmax-normalised prediction vector p ∈ RD and the target is a one-hot vector
t ∈ RD of the a-th speaker. As we held out 4 of 48 speakers of the wTIMIT dataset,
we set D = 44.

p = iν(Y)

ti=a = 1 ; ti 6=a = 0

LCE(p, a) = −
D

∑
i

ti log pi + (1− ti) log(1− pi)

Lidt f (Y) = β · LCE(iν(Y), a)

In the first stage of training, we train iν to classify real spoken spectrograms y:

ν← ∇νLidt f (Y)

In the second stage of training, the weights ν are frozen and the W2S network mini-
mizes the following loss, including a term obtained by showing fake speech Ŷ to the
identifier:

Ŷ = fθ(X)

Lw2s = Ladv + Lrecon + Lidt f (Ŷ)

θ ← ∇θLw2s

36 Chapter 4. Speaker Identity

W2S

Critic S2W Identifier

Identifier

FIGURE 4.1: Training schematic for the Convolution WGAN
paradigm with additional identifier loss. In the first training stage
(left) the identifier is trained to classify speakers based on real spoken
excerpts. In the second training phase (right) we keep the identifier
network fixed, but use it to backpropagate the classification loss to

the converter network.

Weighting by β ensures that:

||∇θLidt f (Ŷ)|| ≈ ||∇θLadv|| ≈ ||∇θLrecon||

Model Architecture. The architecture of the identifier network is the same as the
critic network as described in section 3.3 and figure 3.12, except that its initial depth
is 8 and that its final convolutional layer has a depth of 44. It has about 200k param-
eters. The other architectures are the same as for W2S-C.

Training Procedure. In the first training stage of W2S-aux, we train the identifier for
30 true epochs with the ADAM optimizer with learning rate 10−4 and weight decay
10−4.

Aside from training W2S-aux, we also train an identifier on only whispered au-
dio so as to get a feeling for how much of a person’s identity can be derived from
whisper. We train the whisper-identifier under the same conditions, but on the whis-
pered part of WTIMIT.

During the second stage of training W2S-aux, we freeze the weights of the speech-
identifier and set β = .75. All other settings are the same as for W2S-C.

Results. The convergence of the speech identifier is shown in figure 4.2. It converges
at 98% validation accuracy.

The convergence of the whisper identifier is shown in figure 4.3 and converges
at 96% validation accuracy. This means that whispers contain enough information
to predict identity from. However, this score does not grant insight into how well
someone’s spoken voice characteristics can be derived from their whispers.

4.1. Speaker Identification as Auxiliary Task (W2S-aux) 37

FIGURE 4.2: Loss (left) and accuracy (right) of the identifier network
per epoch in the first training stage. The validation score is shown in

blue and validation accuracy converges at 98%.

FIGURE 4.3: Loss (left) and accuracy (right) of the whisper identifier.
The validation accuracy converges at 96%.

During training of W2S-C we kept track of the identification score on the valida-
tion set (evaluated by the identifier model of this chapter). The loss was not back-
propagated; W2S-C was not optimized for speaker identification. The identification
loss and accuracy of the validation set is shown in figure 4.4 and reaches at 55%.

W2S-aux has been optimized for speaker identification. Its convergence is shown
in figure 4.5. Identification accuracy on the validation set converges at 95%.

Discussion. Figure 4.6 shows that the model can still mistake characteristics of the
speaker. This is likely due to the fact that it is hard to infer spoken voice characteris-
tics from whispers alone. In general, the performance of W2S-aux is equal to that of
W2S-C.

Because the training and validation set contain the same speakers, it may be the
case that the network is by-hearting their characteristics and essentially overfitting
to speaker identity (rather than to utterance).

FIGURE 4.4: Identification loss (left) and accuracy (right) of W2S-C on
the validation set, as evaluated by the speech identifier of this chapter

(with frozen weights).

38 Chapter 4. Speaker Identity

FIGURE 4.5: Convergence ofLcr (top left),Ladv (top centre),Lrecon (top
right), Lidt f (centre left) and identifier accuracy (centre right) for W2S-
aux. The bottom row shows ||∇θLadv|| (bottom-left), ||∇θLrecon||

(bottom centre) and ||∇θLidt f || (bottom right).

FIGURE 4.6: Whisper (left), W2S-aux output (centre) and ground
truth speech (right). The pitch of W2S-aux is lower than is charac-
teristic for this speaker, implying that W2S-aux still has trouble with
speaker identity. The excerpt tag in the wTIMIT dataset is ’s123u022’.

4.2. Speaker Embeddings (W2S-embed) 39

4.2 Speaker Embeddings (W2S-embed)

In this section we propose to provide the W2S converter with additional input to
help it synthesize speech with the correct voice. We extract speaker embeddings;
vectorial representations of a person’s spoken voice — and condition the W2S model
on them. We call the model W2S-embed.

Arik et al. [1] extract speaker embeddings by backpropagating the regression loss
(over spectrograms) of a TTS-task to a trainable vector. Speaker embeddings can also
be obtained by training a network to predict them directly (if some pre-computed
embeddings are already available). Other approaches are based on i-vectors [34] or
on a bottleneck layer of a network with a classification loss [28, 21]. We follow the
latter approach, making use of the identifier/critic architecture we have used in the
previous section.

Jia et al. [21] note that training good speaker embeddings requires a dataset of
many speakers, though typically as little as 10 minutes per speaker will suffice.

In the first training stage of W2S-embed, we train an identifier network on the Lib-
riSpeech [43] dataset (augmented with the spoken part of wTIMIT). We use the train-
ing set containing 360 hours of audiobooks by 921 different speakers (about 20 min-
utes of audio per speaker). LibriSpeech contains only spoken voice.

We regard the activations in penultimate layer of the identifier network as an
embedding of the voice of the speaker of the excerpt. To obtain a speaker embed-
ding, we take the mean of the embeddings of all her utterances. The final set of
speaker embeddings is normalised such that every dimension is distributed accord-
ing to N (0, 1).

Model Architecture. The identifier network has the same architecture as in sections
3.3 and 4.1 (shown in figure 3.12), except that the dimensionality of the prediction
vector is 956 and the initial depth is set to 16, which brings the parameter count up
to about 1M. The penultimate layer — which determines the speaker embedding —
has a dimensionality of 256.

We modify the W2S network such that we can condition its prediction on the
speaker embedding. Its architecture is shown in figure 4.7 (original non-conditioned
architecture is shown in figure 3.11). For each of the layers in the upward phase,
we define a 1× 1 convolution over the speaker embedding with equal output di-
mensionality of the layer of interest. The 1× 1× depth output of the convolution is
broadcast to height× width× depth and added (addition, not concatenation) to the
featuremap before the activation function.

Training Procedure. The identifier network was trained under the same conditions
as in 4.1, but for 50 true epochs, after which we use it to determine speaker embed-
dings.

During the second training stage of W2S-embed we randomly select one of three
scenario’s with equal probability for each batch:
• Condition the W2S network on the speaker embedding of the whisperer and

backpropagate identification loss on the identity of the actual whisperer. This
pass ensures that W2S learns to interpret the speaker embedding.
• Condition the W2S network on the zero-vector and backpropagate identifica-

tion loss on the identity of the actual whisperer (effectively the situation of

40 Chapter 4. Speaker Identity

Convolution

Dropout

Max-Pooling

Upsampling Convolution

Broadcast and Add

Concatenation (along depth)

Crop

FIGURE 4.7: Architecture of the converter network W2S-embed. The
speaker embedding is shown on the bottom. The feature map is put
through the activation function (not shown in the figure) after addi-
tion with the broadcast featuremap of the conditioning module. The

figure shows 3 downward layers, but in reality the network has 6.

FIGURE 4.8: Loss (left) and accuracy (right) of the identifier network
of W2S-embed in the first training stage. The validation accuracy con-

verges at 99%.

W2S-aux in section 4.1). This pass makes sure the network cannot get lazy and
should still pay attention to cues in the whisper.
• Condition the W2S model on a random speaker embedding and backpropa-

gate the identification loss on the identity of the drawn speaker embedding.
This also ensures that W2S learns to interpret speaker embeddings and it al-
lows us to leverage the 921 speaker embeddings of the LibriSpeech speakers.

Otherwise the training procedure is exactly that of W2S-aux (section 4.1).

Results. The convergence of the identifier network of W2S-embed is shown in figure
4.8 and reaches 99% validation accuracy.

Convergence of the second training stage is shown in figure 4.9. Identification
accuracy on the validation set reaches 94%.

User Survey. To better quantify the benefit of conditioning on speaker embeddings
we perform a user study. We compare intelligibility and overall quality of speech,
whisper, W2S-C and W2S-embed. We ask participants to transcribe 16 sentences and
rate each clip on general audio quality on a scale of 1 to 5. Participants are asked to

4.2. Speaker Embeddings (W2S-embed) 41

FIGURE 4.9: Convergence of Lcr (top left), Ladv (top centre), Lrecon
(top right), Lidt f (centre left) and identifier accuracy (centre right)
for W2S-embed. The bottom row shows ||∇θLadv|| (bottom-left),

||∇θLrecon|| (bottom centre) and ||∇θLidt f || (bottom right).

µ σ n

Speech 4.2 0.8 64
Whisper 3.5 1.1 50

W2S-C 1.8 0.8 47
W2S-embed 2.0 0.7 43

TABLE 4.1: User Survey Results - Perceived Audio Quality on a Scale
of 1 to 5. For these statistics, the hypothesis W2S-embed > W2S-C has

a p-value of .10, which is not statistically significant.

% Correct % Semi-Correct % Incorrect n

Speech 91 8 1 65
Whisper 74 18 8 51

W2S-C 11 20 69 55
W2S-embed 29 27 43 51

TABLE 4.2: User Survey Results - Intelligibility by Percentage Cor-
rectly Transcribed Samples. For these statistics, the hypothesis W2S-
embed > W2S-C has a p-value of 6 · 10−11, which is statistically sig-

nificant (counting correct=1, semi-correct=.5 and incorrect=0).

42 Chapter 4. Speaker Identity

FIGURE 4.10: User preference for W2S-C or W2S-embed in a direct
comparison (n = 51).

only listen to the excerpt once, so as to have a fair evaluation of intelligibility1. The
set of 16 sentences shown to a participant is balanced in that it contains 4 excerpts
of each condition (speech, whisper, W2S-C and W2S-embed) where the 4 speakers
are an SG and US man and woman. 4 such balanced sets are prepared (the same 16
sentences). A participant is shown one of these sets in a different random order for
each participant.

Additionally, we ask participants which excerpt they prefer in a direct compar-
ison between W2S-C and W2S-embed (same sentence, same speaker). For this test
they are instructed to replay the clips as often as they need.

There are 22 participants. Per result we report n as the amount of statements
gathered.

Table 4.2 indicates that W2S-embed is more intelligible than W2S-C, although both
are drastically worse than whisper and speech. Ideally, the intelligibility of a W2S
model is equal or higher than that of whisper. Table 4.1 shows that perceived quality
of W2S-embed is not better than W2S-C in a statistically significant sense. However,
figure 4.10 shows that people have a preference for W2S-embed in a direct compari-
son.

Discussion. Figure 4.11 shows that W2S-embed model outputs audio with a voice
that is close to the speaker’s true voice. The W2S-C and W2S-aux models only con-
fuse speaker identity in about 5% of cases whereas the W2S-embed model doesn’t
make such mistakes anymore. Although untested by the user study, this may be the
biggest benefit of W2S-embed; speech is synthesized with the true voice of the user.

Figure 4.12 shows that conditioning on a different speaker embedding changes
the characteristics of the output speech, meaning that the W2S-embed model has
learned to pay attention to the speaker embedding. Best quality speech is obtained
by conditioning on the speaker embedding of the actual whisperer, as the model

1There would have been more experimental control if the participants were completely unable to
replay the clip. In this survey they did have the option to.

4.2. Speaker Embeddings (W2S-embed) 43

FIGURE 4.11: Whisper (left), W2S-embed output (centre) and ground
truth speech (right). The excerpt tag in the wTIMIT dataset is

’s123u027’.

FIGURE 4.12: W2S-embed conditioned on the speaker embedding of
speaker 123 (left) and of speaker 107 (right). The excerpt tag in the

wTIMIT dataset is ’s123u126’.

still does pay attention to the input whisper when inferring speech characteristics
and the two sources of information shouldn’t conflict.

Intelligibility and quality is not yet that of whisper or speech. Ideally, we’d like
intelligibility and quality to be higher than that of whisper (prioritising intelligibil-
ity). This model is not yet ready for a real-world application. However, the emer-
gence of pitch and prosody from completely unvoiced input by W2S-C was already
a promising result. It is reassuring that W2S-embed can maintain speaker identity.

Meaningful Embeddings. By projecting the embeddings on a 2D subspace we can
visually inspect similarities in speaker identity. Figures 4.13 and 4.14 show that the
embeddings encode high-level meaning such as speaker gender and native tongue.

We inspect excerpts of female speakers in the ’male domain’. The striking charac-
teristic is not a particularly masculine voice, but a low-frequency buzz in the back-
ground. It appears that the first principal components primarily register the pres-
ence/absence of low frequencies. This may be unsurprising and even desired, but
it is not desired that background noise can influence the speaker embedding. Addi-
tional focus on data pre-processing (e.g. denoising) could greatly benefit the models
of this thesis.

44 Chapter 4. Speaker Identity

FIGURE 4.13: 2D subspace of speaker embeddings found by PCA.
Male speakers in blue, female speakers in red.

FIGURE 4.14: 2D subspace of speaker nationality found by PCA (only
speakers in the wTIMIT dataset).

45

Chapter 5

Beyond the Spectrogram Level

All models discussed in chapters 3 and 4 output magnitude spectrograms. However,
the spectrogram is not yet the waveform, and we must perform some steps to obtain
it. The standard approach is to perform the iterative Griffin-Lim algorithm. In this
chapter we explore alternatives, but will not find an improvement.

We require STFT and iSTFT to be differentiable. Hence, we implement them in terms
of convolutions. An additional benefit is that we can control the evaluated frequen-
cies, which allows us to draw complex-valued mel-scaled spectrograms. Section 5.1
discusses this implementation.

Section 5.2 discusses the importance and the difficulty of working with phases in
more detail.

Section 5.3 discusses the current literature on spectrogram inversion.
In section 5.4 we propose PhaseNet, a simple recurrent neural network that out-

puts phase values for a given magnitude spectrogram. PhaseNet is trained by spec-
trogram continuity only, which means there is no need for a ground-truth waveform.

In section 5.5 we propose to modify W2S-C to output multichannel spectrograms.
This is similar to modifying an image based network to output multiple color chan-
nels rather than grey-scale images. We call the model W2S-M.

In section 5.6 we infer a source-filter model that is implicit in the spectrogram
and synthesize audio according to it.

For the models in this chapter we employ a data augmentation. At training time we
cut n samples from the start of the excerpt before computing the spectrogram, where
n ∼ U(0, hop). This constitutes large changes the phase values of the spectrogram,
whereas the magnitude will change little.

5.1 Mel-scaled STFT (STmFT)

We implement STFT as a convolutional operation in PyTorch, which gives us free-
dom to specify which frequencies we evaluate and the possibility of backpropagat-
ing the gradient through the operation. It should be noted that the O(n log n) FFT-
trick of Cooley and Tukey [5] cannot be applied if evaluated frequencies are not
linearly scaled. Hence, the complexity is O(n2). We did not find this to be a bottle-
neck.

Forward STmFT. We repeat the math of the STFT from section 2.2:

φ =
2π f

N

46 Chapter 5. Beyond the Spectrogram Level

X f m =
m+N

∑
n=m

xnwneiφn

X f m =
m+N

∑
n=m

xnwn(cos(φn) + i sin(φn))

We can see that the real and imaginary values of the STFT describe how much the
signal window x agrees with a cosine and (negative) sine of the frequency f (win-
dowed by w, typically the Hamming window). This is a convolution where the
filters are cosines and sines of the frequencies of interest. The window size is the
length of the filter and the hop size is the stride. We multiply the windowing func-
tion with the filters. We rearrange the output to be a 3D tensor: time, frequency and
complex component.

A f t0 = <(X f t) ; A f t1 = =(X f t)

Inverse STmFT. We implement iSTmFT as a transposed convolution with the same
filters as the forward operation (divided by the amount of frequencies that are eval-
uated). To properly account for the windowing operation, we apply the following
formula [11]1:

x[n]← ∑t xt[n]w[n− tH]

∑t w2[n− tH]

where H is the hop size.
The term in the numerator has been accounted for by multiplying the filters by

the window. The term in the denominator is obtained by convolving over a sequence
of ones with the same length of the signal x. The convolutional filter is w2 and the
operation has the same filter length and stride.

One improvement over the current implementation would be to store the de-
nominator. As it does not depend on the input, re-computing it is redundant.

Mel-scaled convolutions. Convolutional STFT gives us the freedom to pick the
frequencies of interest. We propose to use frequencies derived from the mel-scale
(see section 2.4). We notice that the mel-scale makes iSTmFT(STmFT(x)) emphasize
lower frequencies. To counter-balance this, we propose to multiply the filters of
higher frequencies with a weight proportional to the ratio between mel- and linear-
scale.

xm =

{
xl if xl < 1000
1000 log(xl

1000) + 1000 if xl ≥ 1000

w =
xl

xm

Current practice is to derive the mel-spectrogram from the linear magnitude spectro-
gram, which implies that the mel-spectrogram is always a magnitude spectrogram.
STmFT computes phase values as well. Hence the mel-spectrogram can readily be
inverted by the iSTmFT without a mel-inversionbank or Griffin-Lim.

We’ve found that iSTmFT(STmFT(x)) has low quality with 128 frequency bins. We
suspect that using fewer bins — fewer frequencies that can be imposed on the wave
— is the cause of quality loss. It is customary to perform iSTFT or Griffin-Lim on

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.istft.html

5.2. Importance and Difficulty of Phase 47

FIGURE 5.1: An example of how spectrogram inversion with unsuit-
able phase values corrupts the reconstructed waveform. The original
signal is shown in the top left. The second row shows two overlap-
ping windows of the signal multiplied by the Hamming window (top
right). The third row shows the in-phase and quadrature-phase con-
volutional filter. Inverting the magnitude spectrogram with an un-
suitable phase (here 0 for both windows) amounts to summing the
windows shown in the bottom left. The final signal is shown in the
bottom right. Even though the reconstructed signal is derived from
the spectrogram of the original waveform it is very different from the

original wave. A higher-frequency artifact has been introduced.

the linear spectrogram, which typically has more bins (at least 271 in our previous
experiments). We recommend to use at least 256 mel bins for iSTmFT.

5.2 Importance and Difficulty of Phase

When recording audio with two microphones a few centimeters apart, the phase
values of the two signals’ STFT will be radically different2. However, the difference
in audio content is negligible, if perceivable at all. This is the reason that for many
recognition tasks a magnitude spectrogram suffices; the phases don’t encode high-
level semantics. In synthesis, however, we need some estimate of the phase, as the
input to iSTFT demands a complex-valued spectrogram.

The spectrograms we obtain from the models in chapter 3 are magnitude spectro-
grams. Hence, we have no estimate of the phases. What we are really after are
waveforms whose spectrograms are the spectrograms obtained by the model. As we
can see in the simple example of 5.1, inverting a spectrogram with inappropriate
phase values renders a signal whose spectrogram is not the spectrogram that the
signal was derived of.

2The phase values of the two recordings will be correlated by a linear shift proportional to the wave-
length of the frequencies whose phase-offset they encode. The changes in their phases will thus not be
completely random. However, section 5.5 will show that neural nets find it hard to learn invariance to
this type of change.

48 Chapter 5. Beyond the Spectrogram Level

Intuition says we should include the phase values in the spectrogram and predict
them as well. However, predicting raw phase values in a supervised manner would
be a bad idea. As mentioned before, the same audio recorded a few centimeters
away can have very different values. We’d like a model to be invariant to such nu-
merically large but perceivably insignificant changes. Predicting raw values would
incur a large loss if all phase values are shifted, though it would not be perceiv-
able. Additionally, phase values of frequencies that are not strongly present become
increasingly random.

5.3 Literature Review on Spectrogram Inversion

Takamichi et al. [55] propose to train a Fully Connected DNN to predict a Von Mises
distribution over the phase values (the Von Mises distribution is a distribution on
a circle). They draw time-derivatives of raw phase values in order to use them as
supervised targets.

The Deep Griffin-Lim paradigm of Masuyama et al. [30] formulates the task of
spectrogram inversion as a denoising task. They modify their initial complex spec-
trogram X∗ ∈ CF×T by adding complex Gaussian noise.

N f t = N (0, σ) + i · N (0, σ)

X0 = X∗ + N

Next, they perform a regular Griffin-Lim iteration, but use its artifacts as inputs to a
neural network Fθ , whose task is to predict the residual between Z∗ and X∗:

Yt = STFT(iSTFT(Xt))

Zt = A�Yt � |Yt|

Xt+1 ≈ Z0 −Fθ(Xt, Yt, Zt)

Where
Z0 = STFT(iSTFT(X0))

They then train Fθ to have Xt match X∗ by minimizing MSE. At test time we can
impose random phases to a spectrogram and regard this as a noisy spectrogram to
be denoised by the Deep Griffin-Lim stack. Deep Griffin-Lim iterations — like tradi-
tional Griffin-Lim iterations — can be performed as often as necessary. It is manually
adjustable for a quality/time tradeoff. Their benefit over traditional Griffin-Lim is
that of a higher quality upper-bound.

MelNet [57] is a generative model based on the mel-spectrogram. It inverts spec-
trograms with the gradient-based approach of Decorsière et al. [7]. An initial signal
estimate is updated along the gradient of the MSE between its spectrogram and the
target spectrogram. By considering the STFT to be a multiplication with a filterbank
they derive an analytical solution for the gradient.

Tacotron 2 [50] is amongst the state of the art in Text-to-Speech conversion (TTS).
It predicts spectrograms and inverts them by conditioning a WaveNet [56] on them.
WaveNet is high-quality but slow due to its autoregressive nature. This objection is
resolved by developping flow-based generative models. Parallel WaveNet [40] and
WaveGlow [45] are considered the current state of the art in raw audio waveform
modelling. Chapter 6 discusses their like further.

5.4. PhaseNet 49

The Multi-Headed Convolutional Neural Network (MCNN) [2] proposes to in-
vert a spectrogram in a parallel manner. They perform upsampling in the temporal
dimension using transposed convolutions with stride. It is trained by spectrogram-
continuity; its loss is the MSE between the input spectrogram and the spectrogram
derived from its output. Additional loss terms are taken over time derivatives of the
phase values and over raw phase values weighted by respective frequency magni-
tude.

5.4 PhaseNet

The methods of section 5.3 assume that ground-truth waveforms are available. Al-
though it is not hard to obtain waveform-spectrogram pairs, we want to train on the
outputs of another network — which are just magnitude spectrograms. Although
WaveNet-based models are the current state of the art in audio quality they are
generally quite heavy models (as is MCNN). Considering a real-time application
of which spectrogram inversion is only the second stage, we prefer a lightweight
solution to spectrogram inversion. We propose to predict phase values that match
the spectrogram with a simple RNN.

We propose to train a neural net jψ to predict phase values Φ that match a given spec-
trogram Ŷ such that the waveform derived from them has approximately Ŷ as its
spectrogram (this is the same spectrogram continuity used to train MCNN). We im-
plement jψ as a simple RNN that processes the spectrogram column by column and
outputs angular values. We use STmFT and its inverse to compute 256-dimensional
complex-valued mel-spectrograms; ŷt ∈ R256 ; ŷ∗t ∈ C256 ; φt ∈ [−π, π),R256:

φt = jψ(ŷt, Ŷ<t)

ŷ∗t = ŷt · cos(φt)− i · ŷt · sin(φt)̂̂Y = |STmFT(iSTmFT(Ŷ∗))| ≈ Ŷ

Lcontinuity = MSE(̂̂Y, Ŷ)

ψ← ∇ψLcontinuity

It is optional to backpropagate this loss all the way to the network that generated Ŷ,
making the pipeline fully end-to-end. In our experiments, we only backpropagate
the loss to PhaseNet. A training schematic is shown in figure 5.2.

Model Architecture. The architecture we propose is simple. PhaseNet consists of
a 6-layer RNN3 with input-, output- and hidden-dimensionality of 256. The final
layer maps the 256 dimensional vector to two 256 dimensional vectors of which we
take atan2 to output 256 angular values (which means values near −π and near π

3Initial experiments were run on a 3-layer RNN, in order to keep the model lightweight. We found
that neither 3-layer nor 6-layer PhaseNets are succesful.

50 Chapter 5. Beyond the Spectrogram Level

W2S

Critic S2W

 iSTFT

PhaseNet

 STFT

FIGURE 5.2: Training schematic for PhaseNet.

are considered close together). PhaseNet has about 1M parameters.

atan2(y, x) =

arctan(y
x) if x > 0

arctan(y
x) + π if x < 0 and y ≥ 0

arctan(y
x)− π if x < 0 and y < 0

π
2 if x = 0 and y > 0
−π

2 if x = 0 and y < 0
undefined if x = 0 and y = 0

Training Procedure. We train PhaseNet on the outputs of the CNN model of chap-
ter 3. We denormalize the spectrograms before feeding them to PhaseNet, but we
take the MSE loss over normalized spectrograms (normalized by 3

√
10 · log (x + 1)).

We augment the data by removing n ∼ U(0, hop) samples from the start of the
waveform before taking the spectrogram. The 128-dimensional output of W2S-C is
upsampled to 256-dimensions by linear interpolation before it is shown to PhaseNet.
We invert mel-scaled radial spectrograms with the iSTmFT of section 5.1. The input
(a single sequence) is batched into sub-sequences of length 32. We use the ADAM
optimizer with learning rate 10−4. We train for 400 training epochs each a quarter of
a full epoch.

5.5. Multichannel Spectrograms (W2S-M) 51

FIGURE 5.3: Reconstruction loss of PhaseNet

Results and Discussion. Figure 5.3 shows the reconstruction loss of PhaseNet. The
decrease in loss steadily but very little. Perceived quality of the audio does not im-
prove. Figure 5.4 shows that the phase-images of PhaseNet are of a different nature
than phase-images of natural speech. This indicates that PhaseNet has trouble learn-
ing appropriate phases. In the audio obtained by PhaseNet has artifacts reminiscent
of constant phases and actually sounds worse than random phases.

The failure of PhaseNet can mean multiple things. It may mean that the loss land-
scape of the spectrogram continuity loss function is highly non-convex and prone to
local minima. This might be the reason that the authors of MCNN chose to augment
the objective with more loss terms; so as to regularize learning.

It can also mean that STmFT and/or iSTmFT corrupt the gradient. In MCNN,
the gradient is only backpropagated through the STFT operation, not through its
inverse.

The most interesting thing about PhaseNet is its loss function. Spectrogram continu-
ity allows us to formulate a loss function from nothing (no data is required). However,
it appears that spectrogram continuity by itself is not a strong enough teacher.

5.5 Multichannel Spectrograms (W2S-M)

In this section we propose to modify W2S-C to output spectrograms with three chan-
nels; one for magnitude, one for sin(φ) and one for cos(φ) where φ is the phase. This
is similar to modifying image-based networks to output images with multiple color
channels instead of greyscale images. By explicitly predicting phase, we don’t have
to estimate it from magnitude.

Model Architecture. We constrain the last two channels of each multichannel spec-
trogram (representing sin(φ) and cos(φ)) to form a vector of length 1. We increase
the dimensionality of the spectrograms from 128 to 256. (section 5.1 describes that
iSTmFT renders low quality for fewer spectrogram bins). To handle the larger-size
input we add a layer to each of the networks. To maintain approximately the same
parameter count, we halve the initial depth of each model. The converters have 7
layers (as opposed to 6) with initial depth of 5 (as opposed to 10). This increases
the receptive field size to .7 seconds and the parameter count by less than 1%. The
critic has 6 layers (as opposed to 5) and initial depth of 13 (as opposed to 25), which
increases its parameter count from 2.2M to 2.4M.

52 Chapter 5. Beyond the Spectrogram Level

FIGURE 5.4: Phase images of natural speech (top) and of PhaseNet
(bot). Best viewed electronically and zoomed in. Though at first
glance the top image seems like random noise, closer inspection re-
veals that the scale of the artifacts is related to the frequency. The two
images have very different characteristics. Note that black is −π and

white is π, which in angular values are close together.

5.5. Multichannel Spectrograms (W2S-M) 53

FIGURE 5.5: Convergence of the critic loss (top-left), adversarial loss
(top-centre) and the reconstruction loss (top-right) of the Multichan-
nel Convolutional WGAN model. Validation losses in blue. The
bottom row shows ||∇θLadv||(bottom-left) and ||∇θLrecon|| (bottom-

right).

FIGURE 5.6: The output of the multichannel W2S model after 180,
260, 310 and 390 training epochs.

The model handles three-channel spectrograms everywhere except at the input
of the W2S model and the output of the S2W model.These represent real and fake
whisper and remain single channel spectrograms. As discussed in section 5.2, we
refrain from taking (self-)supervised losses between raw phase values for the recon-
struction loss term. We don’t expect the phase information of the whispered signal
to be informative, because it is of an unperiodic signal.

Training Procedure. The training procedure is exactly that of the single-channel
W2S-C, except that we stop training after 400 training epochs.

Results and Discussion. Figure 5.5 shows that the convergence is noisy. More strik-
ingly, figure 5.6 shows that quality of the converted items does not change steadily
and that the model even unlearns desirable behaviour. Because figure 5.6 only shows
the magnitude spectrogram, and not the phases, it may mean that the model has
learned something valuable about phases instead, for which it has sacrificed perfor-
mance on the magnitudes. Listening to the excerpts, however, tells us that quality
does degrade. The model spends a lot of resources on getting phases right, which
harms the performance on the magnitudes and — most importantly — on perceived
quality.

We conclude that the original single-channel model W2S-C is preferred over the
multi-channel counterpart W2S-M.

54 Chapter 5. Beyond the Spectrogram Level

FIGURE 5.7: Audio wave of a recorded spoken item (top left) and an
item converted from whispers (top right) and their autocorrelation

plots (bottom).

5.6 Pitch Estimation and the Spectrogram as Filter

Periodicity of a wave can be measured by computing its autocorrelation. For voiced
speech it is typical to have an autocorrelation above 90% a full period from the start
of the period (where 100% is the autocorrelation at position 0). Whispered speech
as converted in this work typically scores 60%. In figure 5.7 we can see changes in
pattern per period, and we can also hear that the converted speech doesn’t sound
completely ’voiced’. A way to improve on the model is to promote periodicity dur-
ing voiced phonemes.

A pulse train is a continuous signal with dirac-delta spikes at regular intervals. We
will be picking the frequencies of pulse trains such that we can represent them as
discrete signals that are 1 at the first sample of the period and 0 for the rest. Figure
5.8 shows that — like any periodic signal — a pulse train can be approximated as a
weighted sum of sines and cosines. The phases of these sines and cosines make all
frequencies interfere in such a way that they form the peaks of the pulse train. This
is a very interesting property. If we apply these phases to a magnitude spectrogram,
we would expect its frequencies to interfere in such a way that they peak at regu-
lar intervals like the pulse train. This would promote periodicity. Before we can do
this, we need to extract a pitch contour from the spectrogram that we can construct
a pulse train from.

5.6. Pitch Estimation and the Spectrogram as Filter 55

FIGURE 5.8: A pulse train can be approximated as a weighted sum of
sinoids

Proposed Algorithm. We estimate the pitch contour from the magnitude spectro-
gram with the method of the librosa function piptrack4. It finds the peaks in the spec-
trum by fitting a quadratic function and evaluating the continuous-valued argmax.
The estimated pitch is found if there is a regular interval (in the spectral dimension)
between these peaks. If the confidence score of the obtained pitch is below a thresh-
old, the frame is regarded as unpitched/unvoiced, which is denoted with a pitch
estimate of 0 Hz.

We reconstruct once from a magnitude spectrogram of a real spoken example
and once from a magnitude spectrogram obtained by W2S-C (converted to linear
by multiplying with the mel-inversionbank). We smooth the pitch contour with a
Gaussian blur over the non-zero entries and compare the reconstructions with re-
construction of the Griffin-Lim algorithm. The magnitude spectrogram and pitch
contour are shown in figure 5.9. Audio can be found in the google drive folder with
audio results or be obtained by running the notebook.

Discussion. The proposed algorithm has small (negligible) improvement over us-
ing purely random phases, but is no improvement over the Griffin-Lim algorithm.
Neither smoothing the pitch contour nor initialising the Griffin-Lim algorithm with
the phases of the pulse train seems to have any effect. Particularly in the W2S recon-
struction we hear the unpleasantness of the pulse train in the reconstruction (a harsh
kind of buzz). We can soften that effect somewhat by perturbing the phase values of
the pulse train with Gaussian noise drawn from N (0, π

4), but this is in effect restor-
ing the randomness we meant to address and hurts periodicity.

4https://librosa.github.io/librosa/generated/librosa.core.piptrack.html

56 Chapter 5. Beyond the Spectrogram Level

FIGURE 5.9: Spectrogram (left), pitch contour (centered) and
smoothed pitch contour (right) for a spectrogram of a recorded spo-

ken item (top) and a spectrogram obtained by W2S-C (bottom).

57

Chapter 6

Future Research

Chapter 5 spends much attention on spectrogram inversion, without improving over
the Griffin-Lim algorithm. However, it may be that spectrogram inversion is not the
quality bottleneck. Moreover, if we were to use a different representation of audio,
spectrogram inversion would not be required at all.

6.1 WORLD vocoder

Spectrograms parameterize audio as the frequencies present in overlapping win-
dows. The WORLD vocoder [39] parameterizes audio differently. It is specifically
designed for real-time synthesis, and is used for Voice Conversion by Fang et al. [8].

WORLD parameterizes audio as pitch, harmonic spectral envelope and the aperi-
odic spectral envelope (relative to the harmonic spectral envelope). It exctracts pitch
from the raw audio wave with the DIO algorithm [38]. The spectral envelope is
estimated using CheapTrick[35], which uses both the estimated pitch and the raw
audio wave. Though the original paper mentions using PLATINUM [37] to extract
an excitation signal, the official WORLD vocoder website1 and popular implemen-
tations2 now promote the use of D4C [36] to extract the aperiodic spectral envelope.
WORLD can also synthesize audio from these parameters. It is an interesting option
to modify W2S-C to output these parameters rather than spectrograms.

The overlap of spectrogram windows can be a cause of latency. Before the current
window can be converted, the model needs to wait for all the windows that overlap
with it to have completed. Also, the uncertainty principle (section 2.2) dictates that
taking too small windows hurts resolution in the frequency dimension. In this work
we take spectrogram windows of 36ms with 12ms overlap. WORLD customarily
takes non-overlapping 5ms windows, which incurs less latency.

For speech, the WORLD vocoder looks like a promising alternative to spectrograms
in both audio quality and latency.

6.2 Flow-based Generative Modelling of the Waveform

Representing audio as a spectrogram or any vocoder’s parameters means we are es-
sentially hand-crafting features. Opposingly, feature learning or end-to-end learning
dictates that we should feed the network raw data and leave it to the model to learn
valuable features by itself. This way, the model can potentially leverage information

1http://www.kisc.meiji.ac.jp/ mmorise/world/english/introductions.html
2https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder

58 Chapter 6. Future Research

that would otherwise have been lost in the feature extraction step (such as phase)
and automatically tune the features to be most beneficial for the task at hand.

The current state of the art in audio synthesis models the raw audio wave. WaveNet
[56] is an auto-regressive generative model. Though training can be done in paral-
lel, the network must compute sequentially at test time, which makes it unable to
leverage the power of parallel compute. Because many samples are needed per sec-
ond (typically over 16k) and computation is sequential, WaveNet synthesis cannot
be done in real-time.

Parallel WaveNet [40] and WaveGlow [45] are flow-based generative models de-
scended from WaveNet, and allow for parallel compute and real-time performance
at test time.

WaveNet. Some WaveNets’ first step is to discretize the [-1, 1] range into a bins
according to µ-law encoding [46] and train an embedding xk=0 ∈ Rd for each of the
’classes’. Another option for the first step is to perform a 1D convolution with d
channels. The following 1D-convolutions have an exponentially increasing dilation
factor (doubling until dilation reaches 512, after which the next dilation cycle starts).
Typically WaveNet has 30 layers (3 dilation cycles/blocks of 10 layers each). Each
layer has a gated activation function, a ’conditioning convolution’ and a residual-
and skip-connection. Specifically:

zk = tanh(Wk, f ∗ xk + Vk, f ∗ y)� σ(Wk,g ∗ xk + Vk,g ∗ y)

sk = Wk,s ∗ zk

rk = Wk,r ∗ zk

xk+1 = rk + xk

Where σ(·) is the logistic sigmoid function, Wk are the weights of the k-th layer, xk
are the features of the k-th layer and y the sequence the network is conditioned on.
Figure 6.1 shows a schematic. If the model is conditioned on a single vector h (global
conditioning), the function becomes:

zk = tanh(Wk, f ∗ xk + VT
k, f h)� σ(Wk,g ∗ xk + VT

k,gh)

The final layers gather the skip-connections through summation and map them
through two fully connected layers with ReLU activation. The output is an a-dimensional
softmax vector, ’classifying’ which discretized value is next in the sequence. Another
option is to output the parameters of a mixture of logistics (MoL) distribution, which
is then discretized and bounded to [-1, 1]. The loss is the negative loglikelihood of
the next sample.

Flow-based Generative Models. A normalizing flow [47, 54] is an inverible flavour
of neural network. On the forward pass it takes in random noise z drawn from
a known and simple probability distribution — for instance an isotropic Gaussian
— and outputs a structured sample x. When inverted, it takes in x (a datapoint)
and outputs z whose probability we can easily evaluate under the known simple
distribution.

z ∼ N (0, σ2 · I)

f (z) = x

f−1(x) = z

6.2. Flow-based Generative Modelling of the Waveform 59

FIGURE 6.1: Two layers of WaveNet. Showing dilated convolution
with conditioning, skip-connections and residual connections. Not
showing the initial convolution, gated activation functions and how
the skip-connections are gathered before prediction of the next sam-

ple.

60 Chapter 6. Future Research

The logprobability of the output x depends on the logprobability of the sample z
and on the log-determinant of the Jacobian (logdet-Jacobian) of the transformation:

log px(x) = log pz(z)− log |∂x
∂z
|

During training, we use the network ’the other way around’. We input a sample x
and maximise its logprobability. Because we chose pz to be a simple distribution,
pz(z) can readily be evaluated. The trick is to describe transformations who are easy
to invert and whose logdet-Jacobian is easy to evaluate.

z = f−1(x)

L(x) = − log px(x) = − log pz(z) + log |∂x
∂z
| = −zTz

2σ2 + log |∂x
∂z
|

Many such transformations can be stacked, which allows for a very flexible proba-
bility distribution px. We use the shorthand fK ◦ fK−1(z) for fK(fK−1(z)):

x = fK ◦ fK−1 ◦ ... ◦ f1(z)

log px(x) = log pz(z)−
K

∑
k=1

log |∂ fk

∂zk
|

An example of a transformation with a tractable logdet-Jacobian is a linear transfor-
mation [47]:

x = f (z) = z + uh(wTz + b)

|∂x
∂z
| = |1 + uTh′(wTz + b)w|

Where h is a smooth element-wise non-linearity with derivative h′.

Parallel WaveNet. Inverse Autoregressive Flow (IAF) [25] is a type of normaliz-
ing flow that can compute conditional probability distributions in parallel. Autore-
gressive operations only depend on previous values, which make their determinant
lower-triangular (and their inverse upper-triangular). The logdet-Jacobian of a tri-
angular matrix is the product of its diagonal elements.

xt = f (zt, z<t) = zt · s(z<t) + µ(z<t)

log |∂x
∂z
| = ∑

t
log

∂ f (z≤t)

∂zt

For training, however, zt must be computed sequentially3:

zt = f−1(xt, z<t) =
µ(z<t)− xt

s(z<t)

Instead, the authors of Parallel WaveNet [40] propose Probability Density Distilla-
tion. The ’student’ is an IAF network with WaveNet architecture that takes as input
unconditional logistic noise z and outputs a structured sample x. It also outputs the
parameters st and µt that define the student’s probability distribution pS(xt) for each

3This is the opposite problem as traditional WaveNet. Traditional WaveNet can train in parallel but
must synthesize sequentially, IAF can synthesize in parallel, but must train sequentially.

6.2. Flow-based Generative Modelling of the Waveform 61

element of x. Because the architecture is that of a traditional WaveNet, it can be con-
ditioned on things such as speaker identity, phonemes and/or spectrograms. The
sample x is shown to a pre-trained traditional WaveNet (the teacher), which out-
puts the target probability distribution pT(xt). The student is trained to minimise
the KL-divergence between pS(xt) and pT(xt). The KL-divergence is split up into its
Entropy and Cross-Entropy parts:

DKL(pS||pT) = H(pS, pT)− H(pS)

The Entropy term can be evaluated with the parameter st alone. For the Cross-
Entropy term, many samples are drawn from xt ∼ pS(xt|x<t) (keeping x<t fixed)
and evaluated under pT(xt|x<t).

The power loss is an additional loss function that drives the output x to have the
same spectral content as a sample y. Where x must have been generated under the
same conditions as y and φ(·) is averaged over time.

Lpower = φ(f (x)) + φ(y)

φ(x) = |STFT(x)|2

By leveraging parallel compute, Parallel WaveNet achieves real-time performance
at test time, with virtually no loss in perceived quality as opposed to traditional
WaveNet.

WaveGlow. Prenger et al. propose WaveGlow [45] as a real-time spectrogram in-
version network. It uses invertible 1× 1 convolutions and affine normalizing flows.
The parameters of the affine layers are estimated by WaveNet layers.

A 1× 1 invertible convolution can be regarded as a matrix multiplication. The
weight matrix W must be initialized as orthonormal (and hence invertible). The
addition of its logdet-Jacobian to the loss function serves to keep W invertible.

f−1
k (xk+1) = xk = Wxk+1

The logdet-Jacobian of fk is the log-determinant of W itself and cannot be further
simplified.

The affine layer splits the depth of the incoming vector x in two, and uses one
half to compute the parameters that modify the other half.

xk+1,a, xk+1,b = split(xk+1)

s, t = WN(xk+1,a)

x′k+1,b = s� xk+1,b + t

xk = f−1
k (xk+1) = concat(xk+1,a, x′k+1,b)

log |∂ f−1(xk+1)

∂xk
| = log |St|

Where S is a diagonal matrix whose entries are st. Its determinant is the product of
the diagonal elements. For brevity, we don’t show temporal indices, but the input of
WaveNet is x<t, whereas all other vectors only consider the t-th timepoint.

62 Chapter 6. Future Research

FIGURE 6.2: WaveNet computes features for all timepoints and all
layers. During the next forward pass, most operations are redundant,

which are here shown in red.

Invertibility of the network is guaranteed, because xa is unchanged through the
affine transformation. At test time, we use s and t to perform the inverse of the affine
transform, but we predict them using the same (non-invertible) WaveNet.

xk+1,a, x′k+1,b = split(xk)

s, t = WN(xk+1,a)

xk+1,b =
x′k+1,b − t

s
xk+1 = fk(xk) = concat(xk+1,a, xk+1,b)

WaveGlow is made up of 12 invertible convolution layers and 12 affine layers, where
each affine layer contains an 8-layer WaveNet with 512 channels used for the residual
connection and 256 channels for the skip connection (x, r, z ∈ R512 and s ∈ R256).

6.3 Preventing Redundant Computations

W2S-C uses the same dilated convolutional structure as WaveNet. At test time, they
process spectrograms column-by-column, similar to how WaveNet processes sam-
ple by sample (the difference is that W2S-C is not autoregressive). Figure 6.2 shows
that when processing input per timestep, this convolutional structure performs re-
dundant computations [42]. By storing the values instead of recomputing them, we
trade storage for speed, which may help to achieve real-time performance.

63

Chapter 7

Discussion

The user study of chapter 4 shows that intelligibility and quality of the models in
this thesis are not good enough for a production-level application. However, this
does not imply a total failure. The emergence of pitch, periodicity and prosody from
completely unvoiced input is remarkable.

One of the main benefits of the methods in this thesis is that the adversarial paradigm
does not require paired data. Neither does training the audio-to-audio mapping re-
quire transcribed data. These factors make data acquisition a lot easier. An addi-
tional benefit of the adversarial paradigm is that there is no need for Dynamic Time
Warping (DTW), which can be source of data contamination.

The W2S-R model is an LSTM model augmented with pre-trained RBMs at the outer-
most layers. It improves over W2S-L, which is just the LSTM without RBM pretrain-
ing. Figure 3.8 shows that reconstructing speech with just the speech-RBM degrades
quality. The quality is similar to that of a converted whisper by W2S-R (shown in
3.9). This suggests that the speech-RBM is the limiting factor. Perhaps unsurpris-
ingly; The vast majority of the parameters reside in the LSTM module. A balance
favouring more parameters to the RBM layers may help increase quality of the W2S-
R model.

Chapter 4 shows that it is beneficial to train speaker embeddings. This way, the
model can synthesize a voice that the user may recognize as her own. The embed-
dings encode meaningful features with which characteristics such as speaker gender
and nationality can be distinguished.

The models in this thesis use spectrograms to represent audio. Spectrogram inver-
sion can be done in many ways, and is touched upon at length in chapter 5. How-
ever, it may be the case that spectrogram inversion is not the quality bottleneck. If a
predicted spectrogram is low quality, a good spectrogram inversion will still render
low quality audio. This fact is supported by high-quality Griffin-Lim reconstruc-
tions of magnitude spectrograms drawn from natural speech (section 5.6).

Perhaps focus can best be spent on predicting better spectrograms by data pre-
processing and augmentation. By denoising spoken but not whispered data, W2S
will be trained to perform speech denoising in addition to conversion.

By using either the WORLD vocoder or WaveNet-type models, spectrogram in-
version will not be required at all. How to modify the pipeline for WaveNet-type
models other than for spectrogram inversion is an open problem and an interesting
area of research.

65

Appendix A

Exploratory Experiment with
WaveNet

To get a feel for what it takes to train WaveNet, we train one to perform spectrogram
inversion. The choices and circumstances of this experiment are not optimal and the
experiment was not successful.

We show the network real speech waveforms (16 kHz) and predict the next value in
the sequence, conditioned on the spectrogram.

Model Architecture. We do not discretize the input wave, but rather convolve with
128 channels. The dimensionality of the feature-, residual- and skip-connections is
set to 128 (x, r, z, s ∈ R128). The WaveNet has 9 layers, which brings the parameter
count to about 1.2M and the receptive field size to 1024. Although the receptive field
size is small, it is larger than the size of a spectrogram window (540). We predict the
parameters of a MoL distributions with 10 mixtures and discretize the [-1, 1] range
into 256 equal bins.

Training Procedure. We train WaveNet with the ADAM optimizer with learning
rate 10−4. We use Exponential Moving Average (EMA) with decay .999 over the pa-
rameters1. We train for 2000 training epochs of 600 items. This takes about 12 days
on a single K20 GPU-node. Convergence is shown in figure A.1.

Results and Discussion. We observe that the model preferably outputs pure sinu-
soids. This is probably the easiest signal to synthesize. Synthesizing can either be
done by taking the argmax of the predicted MoL distribution or by sampling from it.
The output is always sinusoidal when synthesizing by argmax. With sampling, the

1The teacher of Parallel WaveNet is trained with Polyak averaging [44]. EMA behaves like Polyak
in the limit as decay approaches 1

FIGURE A.1: Convergence of WaveNet loss. Though learning ap-
pears to stagnate, significantly zooming in reveals that the loss is still

decreasing.

66 Appendix A. Exploratory Experiment with WaveNet

FIGURE A.2: Spectrograms of WaveNet output after 90 (top left), 600
(top right), 840 (bottom left) and 2000 (bottom right) epochs.

model sometimes outputs speech-like artifacts (shown in figure A.2), indicating that
it is learning something about speech. However, as training continues, the model
increasingly prefers sinusoids. The model seems to mostly ignore the spectrogram
input. In general, this WaveNet is not a succes.

Our WaveNet has especially few parameters, which may explain its failure. A typi-
cal WaveNet has 512 or 256 channels where we use 128, and 30 layers where we use
9. Though originally WaveNets have a kernel size of 2, some more recent ones use a
kernel size of 3. However, it should be noted that the authors of Tacotron 2 succes-
fully train a spectrogram inversion WaveNet with as few as 12 layers. They mention
that the information-rich spectrogram conditioning helps synthesize quality speech.

Aside from parameter limitations, hardware limitations may have also played
a role. The authors of TacoTron 2 mention that their WaveNet is trained across 32
GPUs. The authors of WaveNet and Parallel WaveNet are unclear about their hard-
ware use.

We update the Exponential Moving Average every batch. Perhaps it is better to
update every epoch, which would not favour more recent parameters as much.

Training a proper WaveNet for spectrogram inversion (likely involving more pa-
rameters and a WaveGlow or Parallel WaveNet descendant) remains an experiment
outside the scope of this thesis. However, by the notion that spectrogram inversion
may not be the quality bottleneck of whisper-to-speech conversion, leveraging raw
audio waveform modelling for something else than spectrogram inversion is also an
interesting vein of future research.

67

Appendix B

Additional runs for W2S-C

Section 3.3 discusses the W2S-C model. One could argue that figure 3.13 does not
quite show the loss to have converged. Figure B.1 shows training for another 600
training epochs (totalling 1200 training epochs). Perceived quality does not improve
over the 600-point.

FIGURE B.1: Convergence of the critic loss (left), adversarial loss (cen-
tre) and recon loss (right) of W2S-C, continued for another 600 epochs,

totalling 1200 epochs.

69

Appendix C

Additional runs for W2S-embed

Section 4.2 discusses the W2S-embed model. One could argue that figure 4.9 does
not quite show that the network has converged. Figure C.1 shows that loss keeps
decreasing after the 600-epoch point and up to the 1000-epoch point, where it still
does not converge. Perhaps the loss may drop yet further. Difference between per-
ceived quality of the 1000-epoch and 600-epoch versions is negligible. User-study
results obtained from the 600-epoch version are still valid.

Another instance of the run (the same architecture under the same conditions, with
different random initialisation) trained for 1000 training epochs shows a peculiar
learning profile (figure C.2). The loss hits a strong local minimum around the 400th
epoch and stops improving. Perceived quality does not improve over the W2S-
embed model of section 4.2 or the W2S-C model of section 3.3. This highlights that
training is not especially robust.

70 Appendix C. Additional runs for W2S-embed

FIGURE C.1: Convergence of the critic loss (top left), adversarial loss
(top centre), reconstruction loss (top right), identifier loss (bottom
left) and identifier accuracy (bottom right) for the continued W2S-

embed run.

FIGURE C.2: Convergence of the critic loss (top left), adversarial loss
(top centre), reconstruction loss (top right), identifier loss (bottom
left) and identifier accuracy (bottom right) for the additional W2S-

embed run with different random initialisation.

71

Bibliography

[1] Sercan Arik et al. “Neural voice cloning with a few samples”. In: Advances in
Neural Information Processing Systems. 2018, pp. 10019–10029.

[2] Sercan Ö Arık, Heewoo Jun, and Gregory Diamos. “Fast spectrogram inver-
sion using multi-head convolutional neural networks”. In: IEEE Signal Pro-
cessing Letters 26.1 (2019), pp. 94–98.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative
adversarial networks”. In: International Conference on Machine Learning. 2017,
pp. 214–223.

[4] Donald J Berndt and James Clifford. “Using dynamic time warping to find pat-
terns in time series.” In: KDD workshop. Vol. 10. 16. Seattle, WA. 1994, pp. 359–
370.

[5] James W Cooley and John W Tukey. “An algorithm for the machine calculation
of complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–
301.

[6] Marco Cuturi and Mathieu Blondel. “Soft-DTW: a differentiable loss function
for time-series”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 894–903.

[7] Rémi Decorsière et al. “Inversion of auditory spectrograms, traditional spec-
trograms, and other envelope representations”. In: IEEE/ACM Transactions on
Audio, Speech, and Language Processing 23.1 (2014), pp. 46–56.

[8] Fuming Fang et al. “High-quality nonparallel voice conversion based on cycle-
consistent adversarial network”. In: 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE. 2018, pp. 5279–5283.

[9] Gene A Frantz and Richard H Wiggins. “Design case history: Speak & Spell
learns to talk”. In: IEEE spectrum 19.2 (1982), pp. 45–49.

[10] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural in-
formation processing systems. 2014, pp. 2672–2680.

[11] Daniel Griffin and Jae Lim. “Signal estimation from modified short-time Fourier
transform”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 32.2
(1984), pp. 236–243.

[12] Ishaan Gulrajani et al. “Improved training of wasserstein gans”. In: Advances
in Neural Information Processing Systems. 2017, pp. 5767–5777.

[13] Yanzhang He et al. “Streaming End-to-end Speech Recognition For Mobile De-
vices”. In: arXiv preprint arXiv:1811.06621 (2018).

[14] Geoffrey E Hinton. “A practical guide to training restricted Boltzmann ma-
chines”. In: Neural networks: Tricks of the trade. Springer, 2012, pp. 599–619.

[15] Geoffrey E Hinton. “Training products of experts by minimizing contrastive
divergence”. In: Neural computation 14.8 (2002), pp. 1771–1800.

72 BIBLIOGRAPHY

[16] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[17] Roger J Ingham et al. “Measurement of speech effort during fluency-inducing
conditions in adults who do and do not stutter”. In: Journal of Speech, Language,
and Hearing Research (2009).

[18] Phillip Isola et al. “Image-to-image translation with conditional adversarial
networks”. In: arXiv preprint (2017).

[19] Andreas Jansson et al. “Singing voice separation with deep U-Net convolu-
tional networks”. In: (2017).

[20] Ye Jia et al. “Direct speech-to-speech translation with a sequence-to-sequence
model”. In: arXiv preprint arXiv:1904.06037 (2019).

[21] Ye Jia et al. “Transfer learning from speaker verification to multispeaker text-
to-speech synthesis”. In: Advances in Neural Information Processing Systems. 2018,
pp. 4480–4490.

[22] Hideki Kawahara, Ikuyo Masuda-Katsuse, and Alain De Cheveigne. “Restruc-
turing speech representations using a pitch-adaptive time–frequency smooth-
ing and an instantaneous-frequency-based F0 extraction: Possible role of a
repetitive structure in sounds”. In: Speech communication 27.3-4 (1999), pp. 187–
207.

[23] Hyunsoo Kim and Haesun Park. “Nonnegative matrix factorization based on
alternating nonnegativity constrained least squares and active set method”.
In: SIAM journal on matrix analysis and applications 30.2 (2008), pp. 713–730.

[24] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[25] Durk P Kingma et al. “Improved variational inference with inverse autoregres-
sive flow”. In: Advances in neural information processing systems. 2016, pp. 4743–
4751.

[26] Hideaki Konno et al. “Whisper to normal speech conversion using pitch esti-
mated from spectrum”. In: Speech Communication 83 (2016), pp. 10–20.

[27] Daniel D Lee and H Sebastian Seung. “Algorithms for non-negative matrix
factorization”. In: Advances in neural information processing systems. 2001, pp. 556–
562.

[28] Xiangang Li and Xihong Wu. “Modeling speaker variability using long short-
term memory networks for speech recognition”. In: Sixteenth Annual Confer-
ence of the International Speech Communication Association. 2015.

[29] Boon Pang Lim. “Computational differences between whispered and non-
whispered speech”. PhD thesis. University of Illinois at Urbana-Champaign,
2011.

[30] Yoshiki Masuyama et al. “Deep Griffin-Lim Iteration”. In: arXiv preprint arXiv:1903.03971
(2019).

[31] Ian McLoughlin et al. “Speech reconstruction using a deep partially super-
vised neural network”. In: Healthcare technology letters 4.4 (2017), pp. 129–133.

[32] G Nisha Meenakshi and Prasanta Kumar Ghosh. “A robust Voiced/Unvoiced
phoneme classification from whispered speech using the ‘color’of whispered
phonemes and Deep Neural Network”. In: Proc. Interspeech 2017 (2017), pp. 503–
507.

BIBLIOGRAPHY 73

[33] Paul Mermelstein. “Distance measures for speech recognition, psychological
and instrumental”. In: Pattern recognition and artificial intelligence 116 (1976),
pp. 374–388.

[34] Yajie Miao, Hao Zhang, and Florian Metze. “Speaker adaptive training of deep
neural network acoustic models using i-vectors”. In: IEEE/ACM Transactions on
Audio, Speech and Language Processing (TASLP) 23.11 (2015), pp. 1938–1949.

[35] Masanori Morise. “CheapTrick, a spectral envelope estimator for high-quality
speech synthesis”. In: Speech Communication 67 (2015), pp. 1–7.

[36] Masanori Morise. “D4C, a band-aperiodicity estimator for high-quality speech
synthesis”. In: Speech Communication 84 (2016), pp. 57–65.

[37] Masanori Morise. “Platinum: A method to extract excitation signals for voice
synthesis system”. In: Acoustical Science and Technology 33.2 (2012), pp. 123–125.

[38] Masanori Morise, Hideki Kawahara, and Haruhiro Katayose. “Fast and reli-
able F0 estimation method based on the period extraction of vocal fold vibra-
tion of singing voice and speech”. In: Audio Engineering Society Conference: 35th
International Conference: Audio for Games. Audio Engineering Society. 2009.

[39] Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. “WORLD: a vocoder-
based high-quality speech synthesis system for real-time applications”. In: IE-
ICE TRANSACTIONS on Information and Systems 99.7 (2016), pp. 1877–1884.

[40] Aaron van den Oord et al. “Parallel WaveNet: Fast high-fidelity speech syn-
thesis”. In: arXiv preprint arXiv:1711.10433 (2017).

[41] Douglas O’Shaughnessy. “Linear predictive coding”. In: IEEE potentials 7.1
(1988), pp. 29–32.

[42] Tom Le Paine et al. “Fast wavenet generation algorithm”. In: arXiv preprint
arXiv:1611.09482 (2016).

[43] Vassil Panayotov et al. “Librispeech: an ASR corpus based on public domain
audio books”. In: 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2015, pp. 5206–5210.

[44] Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochastic approxima-
tion by averaging”. In: SIAM Journal on Control and Optimization 30.4 (1992),
pp. 838–855.

[45] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. “Waveglow: A flow-based
generative network for speech synthesis”. In: ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019,
pp. 3617–3621.

[46] CCITT Recommendation. “Pulse code modulation (PCM) of voice frequen-
cies”. In: ITU. 1988.

[47] Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with
normalizing flows”. In: arXiv preprint arXiv:1505.05770 (2015).

[48] Hamid Sharifzadeh et al. “Formant smoothing for quality improvement of
post-laryngectomised speech reconstruction”. In: Orange Technologies (ICOT),
2017 International Conference on. IEEE. 2017, pp. 11–14.

[49] Hamid R Sharifzadeh et al. “A training-based speech regeneration approach
with cascading mapping models”. In: Computers & Electrical Engineering 62
(2017), pp. 601–611.

74 BIBLIOGRAPHY

[50] Jonathan Shen et al. “Natural TTS synthesis by conditioning wavenet on mel
spectrogram predictions”. In: 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2018, pp. 4779–4783.

[51] Malcolm Slaney. “Auditory toolbox”. In: Interval Research Corporation, Tech. Rep
10.1998 (1998).

[52] Daniel Stoller, Sebastian Ewert, and Simon Dixon. “Adversarial semi-supervised
audio source separation applied to singing voice extraction”. In: 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2018, pp. 2391–2395.

[53] Ilya Sutskever and Tijmen Tieleman. “On the convergence properties of con-
trastive divergence”. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. 2010, pp. 789–795.

[54] EG Tabak and Cristina V Turner. “A family of nonparametric density esti-
mation algorithms”. In: Communications on Pure and Applied Mathematics 66.2
(2013), pp. 145–164.

[55] Shinnosuke Takamichi et al. “Phase reconstruction from amplitude spectro-
grams based on von-Mises-distribution deep neural network”. In: 2018 16th
International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE. 2018,
pp. 286–290.

[56] Aäron Van Den Oord et al. “Wavenet: A generative model for raw audio”. In:
CoRR abs/1609.03499 (2016).

[57] Sean Vasquez and Mike Lewis. “MelNet: A Generative Model for Audio in the
Frequency Domain”. In: arXiv preprint arXiv:1906.01083 (2019).

[58] Cédric Villani. Optimal transport: old and new. Vol. 338. Springer Science & Busi-
ness Media, 2008.

[59] Xiang Wei et al. “Improving the improved training of wasserstein gans: A con-
sistency term and its dual effect”. In: arXiv preprint arXiv:1803.01541 (2018).

	Acknowledgements
	Introduction
	Whispp
	Speech-to-Text, Text-to-Speech
	Mathmatical Conventions
	Report structure

	Background
	Whispered and Voiced Speech
	Spectrograms
	The Griffin-Lim algorithm
	The Mel-Scale
	Spectral Envelope
	Mel-Frequency Cepstral Coefficients (MFCCs)
	Pre-Emphasis
	Linear Predictive Coding (LPC)
	Non-Negative Matrix Factorisation (NMF)
	Gaussian Mixture Models (GMM)
	Dynamic Time Warping (DTW)

	Whisper-to-Speech on the Spectrogram Level
	Sequence-to-Sequence Translation with LSTMs (W2S-L)
	RBM pretraining for LSTM (W2S-R)
	CNN with WGAN training (W2S-C)

	Speaker Identity
	Speaker Identification as Auxiliary Task (W2S-aux)
	Speaker Embeddings (W2S-embed)

	Beyond the Spectrogram Level
	Mel-scaled STFT (STmFT)
	Importance and Difficulty of Phase
	Literature Review on Spectrogram Inversion
	PhaseNet
	Multichannel Spectrograms (W2S-M)
	Pitch Estimation and the Spectrogram as Filter

	Future Research
	WORLD vocoder
	Flow-based Generative Modelling of the Waveform
	Preventing Redundant Computations

	Discussion
	Exploratory Experiment with WaveNet
	Additional runs for W2S-C
	Additional runs for W2S-embed
	Bibliography

